METHODS: BV2 microglia cell suspensions were prepared with type I collagen and cast into culture plates. To characterise the BV2 microglia cultured in 3D, the cultures were evaluated for their viability, cell morphology and response to lipopolysaccharide (LPS) activation. Conventional monolayer cultures (grown on uncoated and collagen-coated polystyrene) were set up concurrently for comparison.
RESULTS: BV2 microglia in 3D collagen matrices were viable at 48 hrs of culture and exhibit a ramified morphology with multiplanar cytoplasmic projections. Following stimulation with 1 μg/ml LPS, microglia cultured in 3D collagen gels increase their expression of nitric oxide (NO) and CD40, indicating their capacity to become activated within the matrix. Up to 97.8% of BV2 microglia grown in 3D cultures gained CD40 positivity in response to LPS, compared to approximately 60% of cells grown in a monolayer (P
METHODS: We built two models, for ER+ (ModelER+) and ER- tumors (ModelER-), respectively, in 281,330 women (51% postmenopausal at recruitment) from the European Prospective Investigation into Cancer and Nutrition cohort. Discrimination (C-statistic) and calibration (the agreement between predicted and observed tumor risks) were assessed both internally and externally in 82,319 postmenopausal women from the Women's Health Initiative study. We performed decision curve analysis to compare ModelER+ and the Gail model (ModelGail) regarding their applicability in risk assessment for chemoprevention.
RESULTS: Parity, number of full-term pregnancies, age at first full-term pregnancy and body height were only associated with ER+ tumors. Menopausal status, age at menarche and at menopause, hormone replacement therapy, postmenopausal body mass index, and alcohol intake were homogeneously associated with ER+ and ER- tumors. Internal validation yielded a C-statistic of 0.64 for ModelER+ and 0.59 for ModelER-. External validation reduced the C-statistic of ModelER+ (0.59) and ModelGail (0.57). In external evaluation of calibration, ModelER+ outperformed the ModelGail: the former led to a 9% overestimation of the risk of ER+ tumors, while the latter yielded a 22% underestimation of the overall BC risk. Compared with the treat-all strategy, ModelER+ produced equal or higher net benefits irrespective of the benefit-to-harm ratio of chemoprevention, while ModelGail did not produce higher net benefits unless the benefit-to-harm ratio was below 50. The clinical applicability, i.e. the area defined by the net benefit curve and the treat-all and treat-none strategies, was 12.7 × 10- 6 for ModelER+ and 3.0 × 10- 6 for ModelGail.
CONCLUSIONS: Modeling heterogeneous epidemiological risk factors might yield little improvement in BC risk prediction. Nevertheless, a model specifically predictive of ER+ tumor risk could be more applicable than an omnibus model in risk assessment for chemoprevention.
MATERIALS/METHODS: Multivariable models developed to predict atomised and generalised urinary symptoms, both acute and late, were considered for validation using a dataset representing 754 participants from the TROG 03.04-RADAR trial. Endpoints and features were harmonised to match the predictive models. The overall performance, calibration and discrimination were assessed.
RESULTS: 14 models from four publications were validated. The discrimination of the predictive models in an independent external validation cohort, measured using the area under the receiver operating characteristic (ROC) curve, ranged from 0.473 to 0.695, generally lower than in internal validation. 4 models had ROC >0.6. Shrinkage was required for all predictive models' coefficients ranging from -0.309 (prediction probability was inverse to observed proportion) to 0.823. Predictive models which include baseline symptoms as a feature produced the highest discrimination. Two models produced a predicted probability of 0 and 1 for all patients.
CONCLUSIONS: Predictive models vary in performance and transferability illustrating the need for improvements in model development and reporting. Several models showed reasonable potential but efforts should be increased to improve performance. Baseline symptoms should always be considered as potential features for predictive models.
METHODS: Nevirapine population pharmacokinetics was modelled with Pmetrics. A total of 708 observations from 112 patients were included in the model building and validation analysis. Evaluation of the model was based on a visual inspection of observed versus predicted (population and individual) concentrations and plots weighted residual error versus concentrations. Accuracy and robustness of the model were evaluated by visual predictive check (VPC). The median parameters' estimates obtained from the final model were used to predict individual nevirapine plasma area-under-curve (AUC) in the validation dataset. The Bland-Altman plot was used to compare the AUC predicted with trapezoidal AUC.
RESULTS: The median nevirapine clearance was of 2.92 L/h, the median rate of absorption was 2.55/h and the volume of distribution was 78.23 L. Nevirapine pharmacokinetics were best described by one-compartmental with first-order absorption model and a lag-time. Weighted residuals for the model selected were homogenously distributed over the concentration and time range. The developed model adequately estimated AUC.
CONCLUSIONS: In conclusion, a model to describe the pharmacokinetics of nevirapine was developed. The developed model adequately describes nevirapine population pharmacokinetics in HIV-infected patients in Malaysia.