Fourth instars larvae of freshwater midge Chironomus javanus (Diptera, Chironomidae) were exposed for a 4-day period in laboratory conditions to a range of copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminium (Al) and manganese (Mn) concentrations. Mortality was assessed and median lethal concentrations (LC(50)) were calculated. LC(50) increased with the decrease in mean exposure times, for all metals. LC(50)s for 96 hours for Cu, Cd, Zn, Pb, Ni, Fe, Al and Mn were 0.17, 0.06, 5.57, 0.72, 5.32, 0.62, 1.43 and 5.27 mg/L, respectively. Metals bioconcentration in C. javanus increases with exposure to increasing concentrations and Cd was the most toxic to C. javanus, followed by Cu, Fe, Pb, Al, Mn, Zn and Ni (Cd > Cu > Fe > Pb > Al > Mn > Zn > Ni). Comparison of LC(50) values for metals for this species with those for other freshwater midges reveals that C. javanus is equally or more sensitive to metals than most other tested dipteran.
The uptake and elimination of copper (Cu), cadmium (Cd), and zinc (Zn) by the amphipod Hyalella azteca during exposure to the metals singly and in various combinations was examined in controlled laboratory experiments. In single metal exposures the accumulation of all metals was rapid and increased with exposure time. Copper elimination was slower compared to that for zinc and for cadmium no elimination was detected after 5 days in clean water. In the two-metal mixtures it appears that the presence of one metal influenced the bioconcentration of the other, since the bioconcentration factor (BCF) for copper was higher in the presence of cadmium than in the presence of zinc and in the case of cadmium, the decrease of K(1) values from cadmium single exposure to the binary and tertiary mixtures suggests possible inhibition of cadmium uptake by the other metals. In the case of the three-metal mixture the situation is less clear, with both increased and decreased BCFs recorded, in comparison to single-metal and two-metal mixtures, suggesting both stimulation and inhibition of metal accumulation.
Freshwater algae can be used as indicators to monitor freshwater ecosystem condition. Algae react quickly and predictably to a broad range of pollutants. Thus they provide early signals of worsening environment. This study was carried out to develop a computer-based image processing technique to automatically detect, recognize, and identify algae genera from the divisions Bacillariophyta, Chlorophyta and Cyanobacteria in Putrajaya Lake. Literature shows that most automated analyses and identification of algae images were limited to only one type of algae. Automated identification system for tropical freshwater algae is even non-existent and this study is partly to fill this gap.
Freshwater mussels of the family Unionidae exhibit a particular form of mitochondria inheritance called double uniparental inheritance (DUI), in which the mitochondria are inherited by both male and female parents. The (M)ale and (F)emale mitogenomes are highly divergent within species. In the present study, we determine and describe the complete M and F mitogenomes of the Endangered freshwater mussel Potomida littoralis (Cuvier, 1798). The complete M and F mitogenomes sequences are 16 451 bp and 15 787 bp in length, respectively. Both F and M have the same gene content: 13 protein-coding genes (PCGs), 22 transfer RNA (trn) and 2 ribosomal RNA (rrn) genes. Bayesian analyses based on the concatenated nucleotide sequences of 12 PCGs and 2 rrn genes of both genomes, including mitogenome sequences available from related species, were performed. Male and Female lineages are monophyletic within the family, but reveal distinct phylogenetic relationships.
Climatic differences across a taxon's range may be associated with specific bioenergetic demands and may result in genetics-based metabolic adaptation, particularly in aquatic ectothermic organisms that rely on heat exchange with the environment to regulate key physiological processes. Extending down the east coast of Australia, the Great Dividing Range (GDR) has a strong influence on climate and the evolutionary history of freshwater fish species. Despite the GDR acting as a strong contemporary barrier to fish movement, many species, and species with shared ancestries, are found on both sides of the GDR, indicative of historical dispersal events. We sequenced complete mitogenomes from the four extant species of the freshwater cod genus Maccullochella, two of which occur on the semi-arid, inland side of the GDR, and two on the mesic coastal side. We constructed a dated phylogeny and explored the relative influences of purifying and positive selection in the evolution of mitogenome divergence among species. Results supported mid- to late-Pleistocene divergence of Maccullochella across the GDR (220-710 thousand years ago), bringing forward previously reported dates. Against a background of pervasive purifying selection, we detected potentially functionally relevant fixed amino acid differences across the GDR. Although many amino acid differences between inland and coastal species may have become fixed under relaxed purifying selection in coastal environments rather than positive selection, there was evidence of episodic positive selection acting on specific codons in the Mary River coastal lineage, which has consistently experienced the warmest and least extreme climate in the genus.
Ninety-five specimens of 14 freshwater fish species from small streams in the Kuala Terengganu district and the Lake Kenyir Reservoir, Malaysia, were surveyed for coccidian infections. Six fish species proved to be infected with apicomplexans belonging to the genus Goussia. In all of these fishes Goussia species were found in unsporulated and semisporulated stages. Oöcysts of four species inhabiting the intestinal epithelium became sporulated in tap-water within 24 hours. In two fish species sporulation failed and only unsporulated oöcysts were recorded in the intestine. Three of the intestinal species finishing sporulation proved to be new to science and were described as Goussia malayensis n. sp., G. bettae n. sp. and G. pogonognathi n. sp. from Apocheilus panchax, Betta splendens and Hemirhamphodon pogonognatus, respectively. The fourth species, found in Trichogaster pectoralis, was identified as G. trichogasteri Székely & Molnár, 1992, a species known from aquarium-cultured T. trichopterus.
A body recovered from the water does not necessarily imply that death was due to drowning. The diagnosis of drowning is discussed together with the significance of the "diatom" and biochemical tests.
Genomic DNA of 13 fish (n=13) species consist of four freshwater which were catfish (Clarias gariepinus), shark catfish (Pangasius larnaudii), tilapia (Oreochromis mossambicus), perch (Lates calcarifer) and nine marine species which were black pomfret (Parastromateus niger), anchovy (Stolephorus commersonii), mabong (Rastrelliger kanagurta), red snapper (Lutjanus erythropterus), herring (Chirocentrus dorab), ray fish (Himantura gerrardii), sardine (Decapterus macrosoma), mackerel (Euthynnus affinis) and tuna (Thunnus tuna) were differentiated using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Seven endonucleases of AluI, BsaJI, HaeIII, HindIII, HinfI, MboI and MboII were examined for the ability to digest cyt b amplicon from each species. Genomic DNA of pork (Sus scrofa domestica) were differentiated from fishes by comparing the digestion patterns produced by similar amplified region and enzymes used. In the present study, it was demonstrated that fishes and pork DNA genome were successfully differentiated using all endonucleases except for HindIII. Thus, PCR-RFLP analysis was found useful for future pork DNA detection in fish products.
Cage-cultured Asian redtail catfish Hemibagrus nemurus (Valenciennes, 1840), a popular food fish in Southeast Asia, proved to be infected by 3 myxozoan species. All the 3 species belonged to the genus Henneguya: 2 were identified as H. mystusia Sarkar, 1985 and H. hemibagri Tchang et Ma, 1993, while the other was described as H. basifilamentalis sp. n. All plasmodia were found in the gills and were characterised by a specific site selection. H. mystusia formed plasmodia in the multi-layered epithelium between the gill lamellae and in the non-lamellar edge of the gill filaments, while H. hemibagri developed in the capillary network of the lamellae. H. basifilamentalis sp. n. had large oval plasmodia located deep among the filaments just above the gill arch.
An ideal model organism for neurotoxicology research should meet several characteristics, such as low cost and amenable for high throughput testing. Javanese medaka (JM) has been widely used in the ecotoxicological studies related to the marine and freshwater environment, but rarely utilized for biomedical research. Therefore, in this study, the applicability of using JM in the neurotoxicology research was assessed using biochemical comparison with an established model organism, the zebrafish. Identification of biochemical changes due to the neurotoxic effects of ethanol and endosulfan was assessed using Fourier Transform Infrared (FTIR) analysis. Treatment with ethanol affected the level of lipids, proteins, glycogens and nucleic acids in the brain of JM. Meanwhile, treatment with endosulfan showed alteration in the level of lipids and nucleic acids. For the zebrafish, exposure to ethanol affected the level of protein, fatty acid and amino acid, and exposure to endosulfan induced alteration in the fatty acids, amino acids, nucleic acids and protein in the brain of zebrafish. The sensitive response of the JM toward chemicals exposure proved that it was a valuable model for neurotoxicology research. More studies need to be conducted to further develop JM as an ideal model organism for neurotoxicology research.
Oxyeleotris marmorata is an ambush predator. It is known for slow growth rate and high market demand. Farming of O. marmorata still remains a challenge. In order to establish a proper feeding practice to stimulate growth, knowledge of its metabolic processes and cost should be examined. Therefore, this study was designed to investigate the diel osmorespiration rhythms of O. marmorata in response to feeding challenge by using an osmorespirometry assay. The results have shown that oxygen consumption rate of the fed fish was approximately 3 times higher than that of the unfed fish in early evening to support specific dynamic action. Digestion and ingestion processes were likely to be completed within 18-20 h in parallel with the ammonia excretion noticeable in early morning. Under resting metabolism, metabolic oxygen consumption was influenced by diel phase, but no effect was noted in ammonia excretion. As a nocturnal species, O. marmorata exhibited standard aerobic metabolic mode under dark phase followed by light phase, with high oxygen consumption rate found in either fed or unfed fish. It can be confirmed that both the diel phase and feeding have a significant interactive impact on oxygen consumption rate, whereas ammonia metabolism is impacted by feeding state. High metabolic rate of O. marmorata supports the nocturnal foraging activity in this fish. This finding suggested that feeding of O. marmorata should be performed during nighttime and water renewal should be conducted during daytime.
Macrobrachium rosenbergii nodavirus (MrNV) is the causative agent of white tail disease (WTD) which seriously impedes the production of the giant freshwater prawn and has a major economic impact. MrNV contains two segmented RNA molecules, which encode the RNA dependent RNA polymerase (RdRp) and the capsid protein (MrNV-CP) containing 371 amino acid residues. MrNV-CP comprises of the Shell (S) and the Protruding (P) domains, ranging from amino acid residues 1-252 and 253-371, respectively. The P-domain assembles into dimeric protruding spikes, and it is believed to be involved in host cell attachment and internalization. In this study, the recombinant P-domain of MrNV-CP was successfully cloned and expressed in Escherichia coli, purified with an immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC) up to ~90% purity. Characterization of the purified recombinant P-domain with SEC revealed that it formed dimers, and dynamic light scattering (DLS) analysis demonstrated that the hydrodynamic diameter of the dimers was ~6 nm. Circular dichroism (CD) analysis showed that the P-domain contained 67.9% of beta-sheets, but without alpha-helical structures. This is in good agreement with the cryo-electron microscopic analysis of MrNV which demonstrated that the P-domain contains only beta-stranded structures. Our findings of this study provide essential information for the production of the P-domain of MrNV-CP that will aid future studies particularly studies that will shed light on anti-viral drug discovery and provide an understanding of virus-host interactions and the viral pathogenicity.
Microcystis aeruginosa is a cyanobacterium that produces a variety of cyclic heptapeptide toxins in freshwater. The protective effects of the macromolecular container cucurbit[7]uril (CB7) were evaluated using mouse models of cyanotoxin-induced liver damage. Biochemical analysis of liver function was performed to gauge the extent of liver damage after exposure to cyanobacterial crude extract [CCE; LD50 = 35 mg/kg body weight; intraperitoneal (i.p.)] in the absence or presence of CB7 (35 mg/kg body weight, i.p.). CCE injection resulted in liver enlargement, potentiated the activities of alanine aminotransferase (ALT) and glutathione S-transferase (GST), increased lipid peroxidation (LPO), and reduced protein phosphatase 1 (PP1) activity. CCE-induced liver enlargement, ALT and GST activities, and LPO were significantly reduced when CB7 was coadministered. Moreover, the CCE-induced decline of PP1 activity was also ameliorated in the presence of CB7. Treatment with CB7 alone did not affect liver function, which exhibited a dose tolerance of 100 mg/kg body wt. Overall, our results illustrated that the addition of CB7 significantly reduced CCE-induced hepatotoxicity (P < 0.05).
The constant increase of heavy metals into the aqueous environment has become a contemporary global issue of concern to government authorities and the public. The study assesses the concentration, distribution, and risk assessment of heavy metals in freshwater from the Linggi River, Negeri Sembilan, Malaysia. Species sensitivity distribution (SSD) was utilised to calculate the cumulative probability distribution of toxicity from heavy metals. The aquatic organism's toxicity data obtained from the ECOTOXicology knowledgebase (ECOTOX) was used to estimate the predictive non-effects concentration (PNEC). The decreasing sequence of hazardous concentration (HC5) was manganese > aluminium > copper > lead > arsenic > cadmium > nickel > zinc > selenium, respectively. The highest heavy metal concentration was iron with a mean value of 45.77 μg L-1, followed by manganese (14.41 μg L-1) and aluminium (11.72 μg L-1). The mean heavy metal pollution index (HPI) value in this study is 11.52, implying low-level heavy metal pollutions in Linggi River. The risk quotient (RQ) approaches were applied to assess the potential risk of heavy metals. The RQ shows a medium risk of aluminium (RQm = 0.1125) and zinc (RQm = 0.1262); a low risk of arsenic (RQm = 0.0122) and manganese (RQm = 0.0687); and a negligible risk of cadmium (RQm = 0.0085), copper (RQm = 0.0054), nickel (RQm = 0.0054), lead (RQm = 0.0016) and selenium (RQm = 0.0012). The output of this study produces comprehensive pollution risk, thus provides insights for the legislators regarding exposure management and mitigation.
Ecdysis is a common phenomenon that happens throughout the life phase of the giant freshwater prawn Macrobrachium rosenbergii. It is vital to better understand the correlation between cannibalism and biochemical compound that exists during the moulting process. The objective of the present study was to determine the amino acid profile released by M. rosenbergii during the ecdysis process that promotes cannibalism. To accomplish this, changes in amino acid levels (total amino acid (TAA) and free amino acid (FAA)) of tissue muscle, exoskeleton, and sample water of culture medium from the moulting (E-stage) and non-moulting (C-stage) prawns were analysed using high-performance liquid chromatography (HPLC). Comparison study revealed that among the TAA compounds, proline and sarcosine of tissues from moulting prawn were found at the highest levels. The level of FAA from water that contains moulting prawns (E-stage) was dominated by tryptophan and proline. Significant values obtained in the present study suggested that these amino acid compounds act as a chemical cue to promote cannibalism in M. rosenbergii during ecdysis. The knowledge of compositions and compounds that were released during the moulting process should be helpful for better understanding of the mechanism and chemical cues that play roles on triggering cannibalism, and also for future dietary manipulation to improve feeding efficiencies and feeding management, which indirectly impacts productivity and profitability.
The epidermal mucus of fish contains antimicrobial agents that act as biological defence against disease. This study aims to identify antibacterial activity and protein concentration of epidermal mucus of Barbodes everetti, a Bornean endemic freshwater fish. The epidermal mucus was extracted with 3% acetic acid, 0.85% sodium chloride and crude solvents. The mucus activity against eight strains of human pathogenic bacteria, including Bacillus cereus ATCC 33019, Escherichia coli O157:H7, Listeria monocytogenes ATCC 7644, Pseudomonas aeruginosa ATCC 27853, Salmonella braenderup ATCC BAA 664, Salmonella typhimurium, Staphylococcus aureus ATCC 25933, and Vibrio cholerae, were tested. The acetic acid mucus extract of B. everetti was able to inhibit five strains of bacteria and show no activity toward E. coli O157:H7, B. cereus ATCC 33019 and L. monocytogenes ATCC 7644. Moreover, the highest protein concentration was quantified in crude extract, followed by aqueous and acetic acid extracts. This study provides a preliminary knowledge on the activity of epidermal mucus of B. everetti towards five out of the eight human pathogens tested, therefore it may contain potential sources of novel antibacterial components which could be further extracted for the production of natural antibiotics towards human-related pathogenic bacteria.
Ovitrap surveillance was initiated for eight continuous weeks to determine the distribution and abundance of Aedes sp. mosquitoes in the University of Malaya campus, Kuala Lumpur, and the impact of meteorological conditions on the Aedes populations. Two study areas within the campus were selected: Varsity Lake and Seventh Residential College. The abundance of Aedes populations in Varsity Lake was indicated by ovitrap index (OI) which ranged from 60.00%-90.00%. The mean number of larvae per ovitrap of Aedes albopictus in Varsity Lake ranged from 11.23+/-2.42-43.80+/-6.22. On the other hand, the outdoor OI for Seventh Residential College ranged from 73.33%-93.33%, respectively, while the mean number larvae per ovitrap for this area ranged from 19.33+/-4.55-35.27+/-5.46, respectively. In addition, the indoor OI of Seventh Residential College ranged from 0.00%-30.00%, while the mean number of larvae per ovitrap for Ae. albopictus ranged from 0-5.90+/-3.55. There was no significant difference (p>0.05) of Ae. albopictus population between Varsity Lake and Seventh Residential College. The studies showed a correlation between OI and mean number of larvae per ovitrap for outdoor Ae. albopictus populations in Varsity Lake and Seventh Residential College (r=0.794). There was also a correlation between the mean larvae number per ovitrap of Ae. albopictus obtained from eight weeks indoor ovitrap surveillance in Seventh Residential College with rainfall (r=0.584). However, there was no correlation between the mean larvae number per ovitrap of Ae. albopictus in both study areas with temperature and relative humidity. Aedes aegypti mosquitoes were found neither indoor nor outdoor in both study areas. This study indicated that the principal dengue vector in the university campus was most likely Ae. albopictus.
In Malaysia, the aquaculture industry, particularly the production of freshwater aquaculture fish, is growing rapidly. Nevertheless, the illegal use of banned antimicrobial agents such as chloramphenicol in aquaculture has become a major concern in relation to the safety of consumers and also the development of drug-resistant strains in bacteria. Driven by those factors, the main intention of this study was to determine the prevalence and types of chloramphenicol resistance genes in E. coli isolated from aquaculture and other environmental waters. The respective chloramphenicol-resistance genes in the isolates were detected by multiplex PCR with four sense primers C-1, C-2, C-3, C-4 and one antisense primer C-R for targeting cat I, cat II, cat III and cat IV genes, respectively. Out of 27 E. coli isolated, 19 were resistant to chloramphenicol. Cat I, cat II, cat III and cat IV genes were detected in 19, 13, 10, and 6 of the E. coli isolates, respectively. The results of this study revealed that chloramphenicol-resistance E. coli is present in aquaculture and environmental waters, in the study area. This finding suggested that although banned, there could be illegal usage of chloramphenicol antibiotic in local aquaculture. The bacteria in aquaculture may have spread to other environmental water through disposal of aquaculture waste water to other environments.
Genetic variation in mitochondrial genes could underlie metabolic adaptations because mitochondrially encoded proteins are directly involved in a pathway supplying energy to metabolism. Macquarie perch from river basins exposed to different climates differ in size and growth rate, suggesting potential presence of adaptive metabolic differences. We used complete mitochondrial genome sequences to build a phylogeny, estimate lineage divergence times and identify signatures of purifying and positive selection acting on mitochondrial genes for 25 Macquarie perch from three basins: Murray-Darling Basin (MDB), Hawkesbury-Nepean Basin (HNB) and Shoalhaven Basin (SB). Phylogenetic analysis resolved basin-level clades, supporting incipient speciation previously inferred from differentiation in allozymes, microsatellites and mitochondrial control region. The estimated time of lineage divergence suggested an early- to mid-Pleistocene split between SB and the common ancestor of HNB+MDB, followed by mid-to-late Pleistocene splitting between HNB and MDB. These divergence estimates are more recent than previous ones. Our analyses suggested that evolutionary drivers differed between inland MDB and coastal HNB. In the cooler and more climatically variable MDB, mitogenomes evolved under strong purifying selection, whereas in the warmer and more climatically stable HNB, purifying selection was relaxed. Evidence for relaxed selection in the HNB includes elevated transfer RNA and 16S ribosomal RNA polymorphism, presence of potentially mildly deleterious mutations and a codon (ATP6113) displaying signatures of positive selection (ratio of nonsynonymous to synonymous substitution rates (dN/dS) >1, radical change of an amino-acid property and phylogenetic conservation across the Percichthyidae). In addition, the difference could be because of stronger genetic drift in the smaller and historically more subdivided HNB with low per-population effective population sizes.