Displaying publications 221 - 240 of 316 in total

Abstract:
Sort:
  1. Othman, A.R., Rahman, M.F., Shukor, M.Y., Abu Zeid, I.M., Ariffin, F.
    MyJurnal
    Chemical toxins and organic contaminants such as hydrocarbons and dyes are major global
    contaminants with countless tones of those chemicals are created yearly with a significant
    amount release to the environment. In this work we screen the ability of a molybdenum-reducing
    bacterium isolated from contaminated soil to decolorize various azo and triphenyl methane dyes
    independent of molybdenum reduction. Biochemical analysis resulted in a tentative identification
    of the bacterium as Enterobacter sp. strain Zeid-6. The bacterium was able to decolorize the azo
    dye Orange G. The bacterium reduces molybdate to Mo-blue optimally at pH between 5.5 and
    8.0 and temperatures of between 30 and 37 oC. Other requirements include a phosphate
    concentration of 5 mM and a molybdate concentration of 20 mM. The absorption spectrum of the
    Mo-blue produced was similar to previous Mo-reducing bacterium, and closely resembles a
    reduced phosphomolybdate. Molybdenum reduction was inhibited by copper, lead, mercury and
    silver which showed 36.8, 16.9, 64.9 and 67.6% inhibition to Mo-reducing activity of
    Enterobacter sp. strain Zeid-6, respectively. The resultant molybdenum blue spectrum closely
    resembles the spectrum of molybdenum blue from the phosphate determination method. The
    ability of this bacterium to detoxify molybdenum and decolorize azo dye makes this bacterium
    an important tool for bioremediation.
    Matched MeSH terms: Coloring Agents
  2. Asraa Faris, Hadri Hadi Md Yusof, Shahidee Zainal Abidin, Omar Habib, Cheah, Pike-See, Stanslas, Johnson, et al.
    MyJurnal
    Introduction: One of the commonly used techniques for mutation screening is High Resolution Melting (HRM) analysis. HRM is a post PCR method that relies on the detection of the fluorescent signals acquired due to the release of DNA intercalated dyes upon the melting of dsDNA to ssDNA. The method is simple, inexpensive and does not require post PCR-handling, making it suitable for high throughput screening. Methods: This study aimed to develop and validate HRM technique for the screening of two disease-associated single nucleotide polymorphisms (SNPs) namely BDNF rs6265 and DAT1 rs40184 using a total of 30 gDNA samples. The obtained results were confirmed and validated by sequencing. Results: HRM analysis showed that the predicted genotypes of BDNF rs6265 and DAT1 rs40184 among all the gDNA samples were in 100% concordance with the sequencing results, making it an accurate and sensitive method for the detection of SNPs. Conclusions: The application of HRM can accurately determine the genotype of BDNF rs6265 and DAT1 rs40184 SNPs, making it a promising tool for rapid and high-throughput screening of targeted SNPs in a large population study.
    Matched MeSH terms: Coloring Agents
  3. Mamat, M., Abdullah, M.A.A., Jaafar, A.M., Soh, S.K.C., Lee, C.E.
    ASM Science Journal, 2018;11(101):105-113.
    MyJurnal
    As textile production flourishes nowadays, the amount of dyed wastewater entering the
    water body has also increased. Dyes could have serious negative impacts to the environment
    and also the human health, hence, they need to be removed from the water body. In this
    study, layered double hydroxide (LDH) of manganese/aluminium (MnAl) was synthesised
    to be used as a potential adsorbent to remove methyl orange (MO) dye due to its unique
    lamellar structure which provides LDH with high anion adsorption and exchange ability.
    MnAl was synthesized by using co-precipitation method and characterized by powder X-ray
    diffraction (PXRD), Fourier-Transform Infrared Spectroscopy (FTIR), Inductively coupled
    plasma atomic emission spectroscopy (ICP-AES) and Carbon, Hydrogen, Nitrogen, Sulphur
    (CHNS) elemental analysers, and Accelerated Surface Area and Porosity Analyzer (ASAP).
    Adsorption studies were conducted at different contact times and dosages of MnAl to evaluate
    the performance of MnAl in removing MO from water. Kinetic and isotherm models were
    tested using pseudo-first order, pseudo-second order, Langmuir isotherm and Freundlich
    isotherm. MnAl LDH was found to be perfectly fitted into pseudo-second order and Langmuir
    isotherm.
    Matched MeSH terms: Coloring Agents
  4. Wahid W, Ahmad Fahmi NA, Mohd Salleh AF, Mohd Yasin '
    Respir Med Case Rep, 2019;28:100939.
    PMID: 31667075 DOI: 10.1016/j.rmcr.2019.100939
    Bronchopulmonary lophomoniasis is rare but immunocompromised individual is susceptible to this infection. We reported a case of bronchopulmonary lophomoniasis in a Malaysian female with systemic lupus erythromatosus. She presented with productive cough, shortness of breath and high-grade fever for 2 weeks. Physical examination revealed bronchial sound and crackles over the left lung with, reduced expansion and dull percussion in lower left lobe. Chest radiography showed consolidation of the left lung. Routine laboratory tests revealed general low cell count. Blood and sputum culture were negative. Bronchoalveolar lavage stain and culture for bacterial and fungal were negative. Bronchoalveolar lavage for Lophomonas blattarum was positive. Patient was treated with antiprotozoal drug, metronidazole. All her clinical problems resolved and she was discharged 14 days after admission.
    Matched MeSH terms: Coloring Agents
  5. Khalil Ebrahim Jasim
    Sains Malaysiana, 2012;41:1011-1016.
    During the last quarter of the twentieth century there have been intensive research activities looking for green sources of energy. The main aim of the green generators or converters of energy is to replace the conventional (fossil) energy sources, hence reducing further accumulation of the green house gasses GHGs. Conventional silicon and III-V semiconductor solar cell based on crystalline bulk, quantum well and quantum dots structure or amorphous and thin film structures provided a feasible solution. However, natural dye sensitized solar cells NDSSC are a promising class of photovoltaic cells with the capability of generating green energy at low production cost since no vacuum systems or expensive equipment are required in their fabrication. Also, natural dyes are abundant, easily extracted and safe materials. In NDSSC, once dye molecules exposed to light they become oxidized and transfer electrons to a nanostructured layer of wide bandgap semiconductors such as TiO2. The generated electrons are drawn outside the cell through ohmic contact to a load. In this paper we review the structure and operation principles of the dye sensitized solar cell DSSC. We discuss preparation procedures, optical and electrical characterization of the NDSSC using local dyes extracted from Henna (lawsonia inermis L.), pomegranate, cherries and Bahraini raspberries (rubus spp.). These natural organic dyes are potential candidates to replace some of the man-made dyes used as sensitizer in many commercialized photoelectrochemical cells. Factors limiting the operation of the DSSC are discussed. NDSSCs are expected to be a favored choice in the building-integrated
    photovoltaics (BIPV) due to their robustness, therefore, requiring no special shielding from natural events such as tree strikes or hails.
    Matched MeSH terms: Coloring Agents
  6. Al-Dulaimi AA, Shahrir Hashim, Khan M
    Sains Malaysiana, 2011;40:1179-1186.
    Two inorganic pigments (TiO2 and SiO2) were used to prepare composites with polyaniline (PANI) by situ polymerization method. PANI and PANI composites with SiO2 and TiO2 were characterized using Fourier transform infrared spectroscopy and X-ray diffraction. The morphology of the synthesized pigments (PANI , PANI-SiO2 and PANI-TiO2) was examined using scanning electron microscopy. Samples were then used as pigments through blending them with acrylic paint and applied on the surface of carbon steel panels. Corrosion was evaluated for coating of carbon steel panels through full immersion test up to standard ASTMG 31. Mass loss was calculated after they have been exposed in acidic media. A digital camera was also used for monitoring corrosion visually on the surface of carbon steel specimens. The results revealed that acrylic paint pigmented by PANI-SiO2 composite was more efficient in corrosion protection for carbon steel compared with the other synthesized pigments.
    Matched MeSH terms: Coloring Agents
  7. Joon Ching Juan, Sze Nee Goh, Ta Yeong Wu, Emy Marlina Samsudin, Tan Tong Ling, Sharifah Bee Abd. Hamid
    Sains Malaysiana, 2015;44:1011-1019.
    Disposal of dye wastewater into water streams without treatment endangers human and marine lives. This work focused on the second largest class of textile dyes after azo dyes due to its high resistivity to biodegradation and high toxicity. The photocatalytic degradation of Reactive Blue 4 (RB4), an anthraquinone dye, has been investigated using pure anatase nano titanium (IV) oxide (TiO2). The dye molecules were fully degraded and the addition of hydrogen peroxide (H2O2) enhanced the photodegradation efficiency. It is found that the degradation as the hydroxyl radicals in the bulk solution is sufficient for complete mineralisation. The disappearance of the dye follows pseudo-first-order kinetics. The effect of pH, amount of photocatalyst, UV-light intensity, light source and concentration of hydrogen peroxide was ascertained.
    Matched MeSH terms: Coloring Agents
  8. Phatai P, Srisomang R
    Sains Malaysiana, 2016;45:1477-1485.
    In this study, the adsorption efficiency of methyl violet (MV) dye onto Ce0.3Al0.7 and Ce0.3Al0.7Agx (x = 0.1, 0.3 & 0.5) mixed oxides was investigated. The properties of mixed oxide were determined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), N2 adsorption-desorption isotherm, diffuse reflectance UV-vis spectroscopy (UV-vis DRS) and X-ray absorption near edge structure (XANES). Characterization showed that synthesized mixed oxide with fluorite has a pure cubic structure of a mesoporous nature and a small grain size with rough surface. Batch adsorption experiments were used to study parameters including contact time and initial dye concentration. The results showed that these parameters affected the degree of MV dye adsorption. The dye adsorption of mixed oxides attained equilibrium at 120 min. The equilibrium adsorption data were analyzed using Langmuir, Freundlich and Temkin isotherms. The adsorption behavior of MV dye onto Ce0.3Al0.7 was found to follow the Langmuir isotherm (R2 = 0.9951), providing a maximum monolayer adsorptive capacity of 2.35 mg/g. Alternatively, the adsorption of MV dye onto Ce0.3Al0.7Ag0.1 (R2 = 0.7839), Ce0.3Al0.7Ag0.3 (R2 = 0.9301) and Ce0.3Al0.7Ag0.5 (R2 = 0.9396) followed the Freundlich isotherm. The possible adsorption mechanisms of MV dyes onto the Ce0.3Al0.7 and Ce0.3Al0.7Agx were also discussed.
    Matched MeSH terms: Coloring Agents
  9. Fazli FIM, Nayan N, Ahmad MK, Mohd Napi Ml, Hamed NKA, Khalid NS
    Sains Malaysiana, 2016;45:1197-1200.
    Titanium dioxide (TiO2
    ) nanoparticles thin film has been successfully synthesized by a spray pyrolysis deposition method
    by using an air compressor on a fluorine-doped tin oxide (FTO) substrate and was annealed at different temperature. TiO2
    is the most common oxide as an electrode in dye sensitized solar cell (DSSC) which still has chances of improvements to
    increase its efficiency as an electrode. The efficiency of a DSSC was relatively low but modifications on every part of a
    DSSC were currently in research progress and an increase in adsorbed dye molecules was considered a potential. Thus,
    the influences of annealing temperature on structural and morphological properties of TiO2
    have been studied using
    X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively, while the efficiency of
    the films in a solar cell was studied by a solar simulator. The FESEM result showed several degrees of porosity obtained
    by varying the annealing temperature. The crystallinity of TiO2 investigated by XRD showed that the crystallinity of the
    TiO2
    thin films was generally unaffected by the annealing temperature. The relationship between the properties and the
    efficiency of the films as an electrode was also studied
    Matched MeSH terms: Coloring Agents
  10. Jun LY, Karri RR, Mubarak NM, Yon LS, Bing CH, Khalid M, et al.
    Environ Pollut, 2020 Apr;259:113940.
    PMID: 31931415 DOI: 10.1016/j.envpol.2020.113940
    Jicama peroxidase (JP) was covalently immobilized onto functionalized multi-walled carbon nanotube (MWCNT) Buckypaper/Polyvinyl alcohol (BP/PVA) membrane and employed for degradation of methylene blue dye. The parameters of the isotherm and kinetic models are estimating using ant colony optimization (ACO), which do not meddle the non-linearity form of the respective models. The proposed inverse modelling through ACO optimization was implemented, and the parameters were evaluated to minimize the non-linear error functions. The adsorption of MB dye onto JP-immobilized BP/PVA membrane follows Freundlich isotherm model (R2 = 0.99) and the pseudo 1st order or 2nd kinetic model (R2 = 0.980 & 0.968 respectively). The model predictions from the parameters estimated by ACO resulted values close the experimental values, thus inferring that this approach captured the inherent characteristics of MB adsorption. Moreover, the thermodynamic studies indicated that the adsorption was favourable, spontaneous, and exothermic in nature. The comprehensive structural analyses have confirmed the successful binding of peroxidase onto BP/PVA membrane, as well as the effective MB dye removal using immobilized JP membrane. Compared to BP/PVA membrane, the reusability test revealed that JP-immobilized BP/PVA membrane has better dye removal performances as it can retain 64% of its dye removal efficiency even after eight consecutive cycles. Therefore, the experimental results along with modelling results demonstrated that JP-immobilized BP/PVA membrane is expected to bring notable impacts for the development of effective green and sustainable wastewater treatment technologies.
    Matched MeSH terms: Coloring Agents
  11. Samantaray MR, Mondal AK, Murugadoss G, Pitchaimuthu S, Das S, Bahru R, et al.
    Materials (Basel), 2020 Jun 19;13(12).
    PMID: 32575516 DOI: 10.3390/ma13122779
    This article provides an overview of the structural and physicochemical properties of stable carbon-based nanomaterials and their applications as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). The research community has long sought to harvest highly efficient third-generation DSSCs by developing carbon-based CEs, which are among the most important components of DSSCs. Since the initial introduction of DSSCs, Pt-based electrodes have been commonly used as CEs owing to their high-electrocatalytic activities, thus, accelerating the redox couple at the electrode/electrolyte interface to complete the circuit. However, Pt-based electrodes have several limitations due to their cost, abundance, complicated facility, and low corrosion resistance in a liquid electrolyte, which further restricts the large-area applications of DSSCs. Although carbon-based nanostructures showed the best potential to replace Pt-CE of DSSC, several new properties and characteristics of carbon-CE have been reported for future enhancements in this field. In this review, we discuss the detailed synthesis, properties, and performances of various carbonaceous materials proposed for DSSC-CE. These nano-carbon materials include carbon nanoparticles, activated carbon, carbon nanofibers, carbon nanotube, two-dimensional graphene, and hybrid carbon material composites. Among the CE materials currently available, carbon-carbon hybridized electrodes show the best performance efficiency (up to 10.05%) with a high fill factor (83%). Indeed, up to 8.23% improvements in cell efficiency may be achieved by a carbon-metal hybrid material under sun condition. This review then provides guidance on how to choose appropriate carbon nanomaterials to improve the performance of CEs used in DSSCs.
    Matched MeSH terms: Coloring Agents
  12. Asnicar F, Leeming ER, Dimidi E, Mazidi M, Franks PW, Al Khatib H, et al.
    Gut, 2021 09;70(9):1665-1674.
    PMID: 33722860 DOI: 10.1136/gutjnl-2020-323877
    BACKGROUND AND AIMS: Gut transit time is a key modulator of host-microbiome interactions, yet this is often overlooked, partly because reliable methods are typically expensive or burdensome. The aim of this single-arm, single-blinded intervention study is to assess (1) the relationship between gut transit time and the human gut microbiome, and (2) the utility of the 'blue dye' method as an inexpensive and scalable technique to measure transit time.

    METHODS: We assessed interactions between the taxonomic and functional potential profiles of the gut microbiome (profiled via shotgun metagenomic sequencing), gut transit time (measured via the blue dye method), cardiometabolic health and diet in 863 healthy individuals from the PREDICT 1 study.

    RESULTS: We found that gut microbiome taxonomic composition can accurately discriminate between gut transit time classes (0.82 area under the receiver operating characteristic curve) and longer gut transit time is linked with specific microbial species such as Akkermansia muciniphila, Bacteroides spp and Alistipes spp (false discovery rate-adjusted p values <0.01). The blue dye measure of gut transit time had the strongest association with the gut microbiome over typical transit time proxies such as stool consistency and frequency.

    CONCLUSIONS: Gut transit time, measured via the blue dye method, is a more informative marker of gut microbiome function than traditional measures of stool consistency and frequency. The blue dye method can be applied in large-scale epidemiological studies to advance diet-microbiome-health research. Clinical trial registry website https://clinicaltrials.gov/ct2/show/NCT03479866 and trial number NCT03479866.

    Matched MeSH terms: Coloring Agents
  13. Wong CPP, Lai CW, Lee KM, Hamid SBA
    Materials (Basel), 2015 Oct 19;8(10):7118-7128.
    PMID: 28793623 DOI: 10.3390/ma8105363
    Textile industries consume large volumes of water for dye processing, leading to undesirable toxic dyes in water bodies. Dyestuffs are harmful to human health and aquatic life, and such illnesses as cholera, dysentery, hepatitis A, and hinder the photosynthetic activity of aquatic plants. To overcome this environmental problem, the advanced oxidation process is a promising technique to mineralize a wide range of dyes in water systems. In this work, reduced graphene oxide (rGO) was prepared via an advanced chemical reduction route, and its photocatalytic activity was tested by photodegrading Reactive Black 5 (RB5) dye in aqueous solution. rGO was synthesized by dispersing the graphite oxide into the water to form a graphene oxide (GO) solution followed by the addition of hydrazine. Graphite oxide was prepared using a modified Hummers' method by using potassium permanganate and concentrated sulphuric acid. The resulted rGO nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV-Vis), X-ray powder diffraction (XRD), Raman, and Scanning Electron Microscopy (SEM) to further investigate their chemical properties. A characteristic peak of rGO-48 h (275 cm-1) was observed in the UV spectrum. Further, the appearance of a broad peak (002), centred at 2θ = 24.1°, in XRD showing that graphene oxide was reduced to rGO. Based on our results, it was found that the resulted rGO-48 h nanoparticles achieved 49% photodecolorization of RB5 under UV irradiation at pH 3 in 60 min. This was attributed to the high and efficient electron transport behaviors of rGO between aromatic regions of rGO and RB5 molecules.
    Matched MeSH terms: Coloring Agents
  14. Kamaruddin AF, Sanagi MM, Wan Ibrahim WA, Md Shukri DS, Abdul Keyon AS
    J Sep Sci, 2017 Nov;40(21):4256-4263.
    PMID: 28851082 DOI: 10.1002/jssc.201700659
    Polypyrrole-magnetite dispersive micro-solid-phase extraction method combined with ultraviolet-visible spectrophotometry was developed for the determination of selected cationic dyes in textile wastewater. Polypyrrole-magnetite was used as adsorbent due to its thermal stability, magnetic properties, and ability to adsorb Rhodamine 6G and crystal violet. Dispersive micro-solid-phase extraction parameters were optimized, including sample pH, adsorbent amount, extraction time, and desorption solvent. The optimum polypyrrole-magnetite dispersive micro-solid phase-extraction conditions were sample pH 8, 60 mg polypyrrole-magnetite adsorbent, 5 min of extraction time, and acetonitrile as the desorption solvent. Under the optimized conditions, the polypyrrole-magnetite dispersive micro-solid-phase extraction with ultraviolet-visible method showed good linearity in the range of 0.05-7 mg/L (R2  > 0.9980). The method also showed a good limit of detection for the dyes (0.05 mg/L) and good analyte recoveries (97.4-111.3%) with relative standard deviations 
    Matched MeSH terms: Coloring Agents
  15. Arul P, Nandhini C, Huang ST, Gowthaman NSK, Huang CH
    Food Chem, 2023 Jul 15;414:135747.
    PMID: 36841102 DOI: 10.1016/j.foodchem.2023.135747
    A simple and rapid screening of biomarkers in clinical and food matrices is urgently needed to diagnose cardiovascular diseases. The cholesterol (Chol) and hydrogen peroxide (H2O2) are critical bio-indicators, which require more inventive detection techniques to be applied to real food, and bio-samples. In this study, a robust dual sensor was developed for Chol and H2O2 using hybrid catalyst. Bovine serum albumin (BSA)-capped nanocatalyst was potentially catalyzed 3,3',5,5'-tetramethylbenzidine (TMB), and H2O2. The enzymatic nanoelectrocatalyst delivered a wide range of signaling concentrations from 250 nM to 3.0 mM and 100 nM to 10 mM, limit of detection (LOD) of 53.2 nM and 18.4 nM for Chol and H2O2. The cholesterol oxidase-BSA-AuNPs-metal-free organic framework (ChOx-BSA-AuNPs-MFOF) based electrode surface effectively operated in live-cells and real-food samples. The enzymatic sensor exhibits adequate recovery of real-food samples (96.96-99.44%). Finally, the proposed system is a suitable choice for the potential applications of Chol and H2O2 in clinical and food chemistry.
    Matched MeSH terms: Coloring Agents
  16. Khan FSA, Mubarak NM, Tan YH, Karri RR, Khalid M, Walvekar R, et al.
    Environ Sci Pollut Res Int, 2020 Dec;27(35):43526-43541.
    PMID: 32909134 DOI: 10.1007/s11356-020-10482-z
    Substantial discharge of hazardous substances, especially dyes and heavy metal ions to the environment, has become a global concern due to many industries neglecting the environmental protocols in waste management. A massive discharge of contaminantsfrom different anthropogenic activities, can pose alarming threats to living species and adverse effect to the ecosystem stability. In the process of treating the polluted water, various methods and materials are used. Hybrid nanocomposites have attained numerous interest due to the combination of remarkable features of the organic and inorganic elements in a single material. In this regards, carbon and polymer based nanocomposites have gained particular interest because of their tremendous magnetic properties and stability. These nanocomposites can be fabricated using several approaches that include filling, template, hydrothermal, pulsed-laser irradiation, electro-spinning, detonation induced reaction, pyrolysis, ball milling, melt-blending, and many more. Moreover, carbon-based and polymer-based magnetic nanocomposites have been utilized for an extensive number of applications such as removal of heavy metal and dye adsorbents, magnetic resonance imaging, and drug delivery. This review emphasized mainly on the production of magnetic carbon and polymer nanocomposites employing various approaches and their applications in water and wastewater treatment. Furthermore, the future opportunities and challenges in applying magnetic nanocomposites for heavy metal ion and dye removal from water and wastewater treatment plant.
    Matched MeSH terms: Coloring Agents
  17. Tamjid Farki NNANL, Abdulhameed AS, Surip SN, ALOthman ZA, Jawad AH
    Int J Phytoremediation, 2023;25(12):1567-1578.
    PMID: 36794599 DOI: 10.1080/15226514.2023.2175780
    Herein, tropical fruit biomass wastes including durian seeds (DS) and rambutan peels (RP) were used as sustainable precursors for preparing activated carbon (DSRPAC) using microwave-induced H3PO4 activation. The textural and physicochemical characteristics of DSRPAC were investigated by N2 adsorption-desorption isotherms, X-ray diffraction, Fourier transform infrared, point of zero charge, and scanning electron microscope analyses. These findings reveal that the DSRPAC has a mean pore diameter of 3.79 nm and a specific surface area of 104.2 m2/g. DSRPAC was applied as a green adsorbent to extensively investigate the removal of an organic dye (methylene blue, MB) from aqueous solutions. The response surface methodology Box-Behnken design (RSM-BBD) was used to evaluate the vital adsorption characteristics, which included (A) DSRPAC dosage (0.02-0.12 g/L), (B) pH (4-10), and (C) time (10-70 min). The BBD model specified that the DSRPAC dosage (0.12 g/L), pH (10), and time (40 min) parameters caused the largest removal of MB (82.1%). The adsorption isotherm findings reveal that MB adsorption pursues the Freundlich model, whereas the kinetic data can be well described by the pseudo-first-order and pseudo-second-order models. DSRPAC exhibited good MB adsorption capability (118.5 mg/g). Several mechanisms control MB adsorption by the DSRPAC, including electrostatic forces, π-π stacking, and H-bonding. This work shows that DSRPAC derived from DS and RP could serve as a viable adsorbent for the treatment of industrial effluents containing organic dye.
    Matched MeSH terms: Coloring Agents
  18. Astuti SD, Mawaddah A, Kusumawati I, Mahmud AF, Nasution AMT, Purwanto B, et al.
    Lasers Med Sci, 2024 Feb 23;39(1):79.
    PMID: 38393433 DOI: 10.1007/s10103-024-04020-3
    The study investigates the effect of diode laser exposure on curcumin's skin penetration, using turmeric extraction as a light-sensitive chemical and various laser light sources. It uses an in vivo skin analysis method on Wistar strain mice. The lasers are utilized at wavelengths of 403 nm, 523 nm, 661 nm, and 979 nm. The energy densities of the lasers are 20.566 J/cm2, 20.572 J/cm2, 21.162 J/cm2, and 21.298 J/cm2, which are comparable to one another. The experimental animals were divided into three groups: base cream (BC), turmeric extract cream (TEC), and the combination laser (L), BC, and TEC treatment group. Combination light source (LS) with cream (C) was performed with 8 combinations namely 523 nm ((L1 + BC) and (L1 + TEC)), 661 nm ((L2 + BC) and (L2 + TEC)), 403 nm ((L3 + BC) and (L3 + TEC)), and 979 nm ((L4 + BC) and (L4 + TEC)). The study involved applying four laser types to cream-covered and turmeric extract-coated rat skin, with samples scored for analysis. The study found that both base cream and curcumin cream had consistent pH values of 7-8, within the skin's range, and curcumin extract cream had lower viscosity. The results of the statistical analysis of Kruskal-Wallis showed a significant value (p  0.05), while the treatment using BC and TEC showed a significant difference (p 
    Matched MeSH terms: Coloring Agents
  19. Amin ZA, Ali HM, Alshawsh MA, Darvish PH, Abdulla MA
    PMID: 26557855 DOI: 10.1155/2015/317693
    Antrodia camphorata is a parasitic fungus from Taiwan, it has been documented to possess a variety of pharmacological and biological activities. The present study was undertaken to evaluate the potential of Antrodia camphorata ethanol extract to accelerate the rate of wound healing closure and histology of wound area in experimental rats. The safety of Antrodia camphorata was determined in vivo by the acute toxicity test and in vitro by fibroblast cell proliferation assay. The scratch assay was used to evaluate the in vitro wound healing in fibroblast cells and the excision model of wound healing was tested in vivo using four groups of adult Sprague Dawley rats. Our results showed that wound treated with Antrodia camphorata extract and intrasite gel significantly accelerates the rate of wound healing closure than those treated with the vehicle. Wounds dressed with Antrodia camphorata extract showed remarkably less scar width at wound closure and granulation tissue contained less inflammatory cell and more fibroblast compared to wounds treated with the vehicle. Masson's trichrom stain showed granulation tissue containing more collagen and less inflammatory cell in Antrodia camphorata treated wounds. In conclusion, Antrodia camphorata extract significantly enhanced the rate of the wound enclosure in rats and promotes the in vitro healing through fibroblast cell proliferation.
    Matched MeSH terms: Coloring Agents
  20. Vijayasree VP, Abdul Manan NS
    Int J Biol Macromol, 2023 Jul 01;242(Pt 1):124723.
    PMID: 37148927 DOI: 10.1016/j.ijbiomac.2023.124723
    In this study, magnetite carboxymethylcellulose (CMC@Fe3O4) composite as magnetic biological molecules were synthetized for the use as adsorbent to remove four types of cationic dyes, namely Methylene Blue, Rhodamine B, Malachite Green, and Methyl Violet from aqueous solution. The characteristic of the adsorbent was achieved by Fourier Transform Infrared Spectroscopy, Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction, Vibrating Sample Magnetometer and Thermal Gravimetric Analysis techniques. Besides, essential influencing parameters of dye adsorption; the solution pH, solution temperature, contact time, adsorbent concentration and initial dye dosage were studied. FESEM analysis showed the magnetic Fe3O4-TB, Fe3O4@SiO2, Fe3O4@SiO2-NH2 and CMC@Fe3O4 composites were in spherical shape, with average size of 43.0 nm, 92.5 nm, 134.0 nm and 207.5 nm, respectively. On the saturation magnetization (Ms), the results obtained were 55.931 emu/g, 34.557 emu/g, 33.236 emu/g and 11.884 emu/g. From the sorption modelling of Isotherms, Kinetics, and Thermodynamics, the adsorption capacity of dyes is (MB = 103.33 mg/g), (RB = 109.60 mg/g), (MG = 100.08 mg/g) and (MV = 107.78 mg/g). With all the adsorption processes exhibited as exothermic reactions. The regeneration and reusability of the synthetized biological molecules-based adsorbent was also assessed.
    Matched MeSH terms: Coloring Agents
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links