METHODS: In this study, fbpA and mazE genes were chosen as new antimicrobial targets and treated with antisense peptide nucleic acid (PNA). Firstly, they were evaluated by bioinformatics and then analyzed by experimental procedures. Secondly, the functionality was evaluated by stress conditions.
RESULTS: Our results interestingly demonstrated that when fbpA and mazE loci of N. meningitidis were targeted by antisense PNA, 8 µM concentration of fbpA-PNA as well as 30 µM concentration of mazE-PNA inhibited the growth of N. meningitides and were found to be bacteriostatic, whereas 10 μM concentration of fbpA-PNA showed bacteriocidal activity.
CONCLUSION: Our findings demonstrated the bactriocidal activity of fbpA-PNA and bacteriostatic activity of mazEPNA. Therefore, mazE and fbpA genes should be potent antimicrobial targets but further analysis including in vivo analysis should be performed.
Purpose of study: The study aimed to mask and evaluate the unpleasant bitter taste of azithro-mycin (AZ) in the dry suspension dosage form by physisorption technique.
Materials and methods: AZ was selected as an adsorbent and titanium dioxide nanoparticles as adsorbate. The AZ nanohybrids (AZN) were prepared by treating fixed amount of adsorbent with a varied amount of adsorbate, prepared separately by dispersing it in an aqueous medium. The mixture was sonicated, stirred followed by filtration and drying. The AZN produced were characterized by various techniques including scanning electron microscopy (SEM), energy dispersive X-rays (EDX), powder X-ray diffraction (PXRD), HPLC and Fourier-transformed infrared (FTIR). The optimized nanohybrid was blended with other excipients to get stable and taste masked dry suspension dosage form.
Results: The results confirmed the adsorption of titanium dioxide nanoparticles on the surface of AZ. The fabricated optimized formulation was subjected for taste masking by panel testing and accelerated stability studies. The results showed a remarkable improvement in bitter taste masking, inhibiting throat bite without affecting the dissolution rate. The product showed an excellent stability both in dry and reconstituted suspension. The optimized formulation of AZN and was found stable when subjected to physical and chemical stability studies, this is because of short and single step process which interns limits the exposure of the product to various environmental factors that could potentially affect the stability of the product. The dissolution rate of the optimized formulation of AZN was compared with its marketed counterpart, showing the same dissolution rate compared to its marketed formulation.
Conclusion: The current study concludes that, by fabricating AZ-titanium nanohybrids using physisorption can effectively mask the bitter taste of the drug. The palatability and stability of azithromycin formulation was potentially enhanced without affecting its dissolution rate.
MATERIALS AND METHODS: The detection of inducible clindamycin resistance was performed by D-test using erythromycin and clindamycin discs as per CDC guidelines.
RESULTS: Among the 244 clinical isolates of staphylococci studied, 32 (13.1%) showed inducible clindamycin resistance and belonged to the MLSBi phenotype. Among the MLS B i phenotypes, 10 isolates were methicillin-resistant Staphylococcus aureus (38.4% of the total MRSA), 16 were methicillin-sensitive Staphylococcus aureus (12.9% of the total MSSA) and 6 were coagulase-negative staphylococci (6.3% of the total CONS).
CONCLUSION: The test for inducible resistance to clindamycin should be included in the routine antibiotic susceptibility testing, as it will help in guiding therapy.