In the title compound, C23H21N3Se, the C-bound phenyl ring is almost coplanar with the central five-membered ring [dihedral angle = 2.84 (10)°], but the N-bound benzene ring is inclined [dihedral angle = 47.52 (10)°]. The dihedral angle between the Se-bound rings is 69.24 (9)°. An intra-molecular Se⋯N inter-action of 3.0248 (15) Å is noted. In the crystal, C-H⋯π inter-actions connect mol-ecules into double layers that stack along the a axis with no directional inter-actions between them.
In the title compound, C15H8O2S, the coumarin moiety is approximately planar (r.m.s. deviation of the 11 non-H atoms = 0.025 Å) and is slightly inclined with respect to the plane of the thio-phen-3-yl ring, forming a dihedral angle of 11.75 (8)°. In the crystal, the three-dimensional architecture features a combination of coumarin-thio-phene C-H⋯π and π-π [inter-centroid distance = 3.6612 (12) Å] inter-actions.
The title diorganotin compound, [Sn(CH3)2(C28H32N2O4)], features a distorted SnC2NO2 coordination geometry almost inter-mediate between ideal trigonal-bipyramidal and square-pyramidal. The dianionic Schiff base ligand coordinates in a tridentate fashion via two alkoxide O and hydrazinyl N atoms; an intra-molecular hy-droxy-O-H⋯N(hydrazin-yl) hydrogen bond is noted. The alk-oxy chain has an all-trans conformation, and to the first approximation, the mol-ecule has local mirror symmetry relating the two Sn-bound methyl groups. Supra-molecular layers sustained by imine-C-H⋯O(hy-droxy), π-π [between dec-yloxy-substituted benzene rings with an inter-centroid separation of 3.7724 (13) Å], C-H⋯π(arene) and C-H⋯π(chelate ring) inter-actions are formed in the crystal; layers stack along the c axis with no directional inter-actions between them. The presence of C-H⋯π(chelate ring) inter-actions in the crystal is clearly evident from an analysis of the calculated Hirshfeld surface.
The complete mol-ecule of the title hydrazine carbodi-thio-ate complex, [Ni(C19H21N2S2)2], is generated by the application of a centre of inversion. The NiII atom is N,S-chelated by two hydrazinecarbodi-thio-ate ligands, which provide a trans-N2S2 donor set that defines a distorted square-planar geometry. The conformation of the five-membered chelate ring is an envelope with the NiII atom being the flap atom. In the crystal, p-tolyl-C-H⋯π(benzene- i Pr), i Pr-C-H⋯π(p-tol-yl) and π-π inter-actions [between p-tolyl rings with inter-centroid distance = 3.8051 (12) Å] help to consolidate the three-dimensional architecture. The analysis of the Hirshfeld surface confirms the importance of H-atom contacts in establishing the packing.
The title compound, C16H18N2O3, is constructed about a central oxopyridazinyl ring (r.m.s. deviation = 0.0047 Å), which is connected to an ethyl-acetate group at the N atom closest to the carbonyl group, and benzyl and methyl groups second furthest and furthest from the carbonyl group, respectively. An approximately orthogonal relationship exists between the oxopyridazinyl ring and the best plane through the ethyl-acetate group [dihedral angle = 77.48 (3)°]; the latter lies to one side of the central plane [the Nr-Nr-Cm-Cc (r = ring, m = methyl-ene, c = carbon-yl) torsion angle being 104.34 (9)°]. In the crystal, both H atoms of the N-bound methyl-ene group form methyl-ene-C-H⋯O(ring carbon-yl) or N(pyridazin-yl) inter-actions, resulting in the formation of a supra-molecular tape along the a-axis direction. The tapes are assembled into a three-dimensional architecture by methyl- and phenyl-C-H⋯O(ring carbon-yl) and phenyl-C-H⋯O(ester carbon-yl) inter-actions. The analysis of the calculated Hirshfeld surface indicates the dominance of H⋯H contacts to the overall surface (i.e. 52.2%). Reflecting other identified points of contact between mol-ecules noted above, O⋯H/H⋯O (23.3%), C⋯H/H⋯C (14.7%) and N⋯H/H⋯N (6.6%) contacts also make significant contributions to the surface.
The title compound, 2C14H14N4O·H2O, comprises a neutral mol-ecule containing a central pyrazol-3-one ring flanked by an N-bound phenyl group and a C-bound 5-methyl-1H-pyrazol-3-yl group (at positions adjacent to the carbonyl substituent), its zwitterionic tautomer, whereby the N-bound proton of the central ring is now resident on the pendant ring, and a water mol-ecule of crystallization. Besides systematic variations in geometric parameters, the two independent organic mol-ecules have broadly similar conformations, as seen in the dihedral angle between the five-membered rings [9.72 (9)° for the neutral mol-ecule and 3.32 (9)° for the zwitterionic tautomer] and in the dihedral angles between the central and pendant five-membered rings [28.19 (8) and 20.96 (8)° (neutral mol-ecule); 11.33 (9) and 11.81 (9)°]. In the crystal, pyrazolyl-N-H⋯O(carbon-yl) and pyrazolium-N-H⋯N(pyrazol-yl) hydrogen bonds between the independent organic mol-ecules give rise to non-symmetric nine-membered {⋯HNNH⋯NC3O} and {⋯HNN⋯HNC3O} synthons, which differ in the positions of the N-bound H atoms. These aggregates are connected into a supra-molecular layer in the bc plane by water-O-H⋯N(pyrazolide), water-O-H⋯O(carbon-yl) and pyrazolyl-N-H⋯O(water) hydrogen bonding. The layers are linked into a three-dimensional architecture by methyl-C-H⋯π(phen-yl) inter-actions. The different inter-actions, in particular the weaker contacts, formed by the organic mol-ecules are clearly evident in the calculated Hirshfeld surfaces, and the calculated electrostatic potentials differentiate the tautomers.
The asymmetric unit of the title compound, C13H11N3O2S2, comprises two independent mol-ecules (A and B); the crystal structure was determined by employing synchrotron radiation. The mol-ecules exhibit essentially the same features with an almost planar benzo-thia-zole ring (r.m.s. deviation = 0.026 and 0.009 Å for A and B, respectively), which forms an inclined dihedral angle with the phenyl ring [28.3 (3) and 29.1 (3)°, respectively]. A difference between the mol-ecules is noted in a twist about the N-S bonds [the C-S-N-N torsion angles = -56.2 (5) and -68.8 (5)°, respectively], which leads to a minor difference in orientation of the phenyl rings. In the mol-ecular packing, A and B are linked into a supra-molecular dimer via pairwise hydrazinyl-N-H⋯N(thiazol-yl) hydrogen bonds. Hydrazinyl-N-H⋯O(sulfon-yl) hydrogen bonds between A mol-ecules assemble the dimers into chains along the a-axis direction, while links between centrosymmetrically related B mol-ecules, leading to eight-membered {⋯HNSO}2 synthons, link the mol-ecules along [001]. The result is an undulating supra-molecular layer. Layers stack along the b-axis direction with benzo-thia-zole-C-H⋯O(sulfon-yl) points of contact being evident. The analyses of the calculated Hirshfeld surfaces confirm the relevance of the above inter-molecular inter-actions, but also serve to further differentiate the weaker inter-molecular inter-actions formed by the independent mol-ecules, such as π-π inter-actions. This is also highlighted in distinctive energy frameworks calculated for the individual mol-ecules.
Surface sediments along the Southern Terengganu coast (≤7 km from the coast) were analyzed for polycyclic aromatic hydrocarbons (PAHs). The concentrations of 16 USEPA priority polycyclic aromatic hydrocarbons (ΣPAH16) ranged from 2.59 to 155 ng g-1 and their respective alkylated ranged between 8.80 and 24.90 ng g-1. Traces of acephenanthrylene, benzo[c]phenanthrene, thiophenic PAH, and benzonaphthofuran were identified. PAH diagnostic ratios and cross-plots revealed that these sedimentary PAH compounds are derived mainly from pyrogenic sources, primarily from biomass burning and petroleum combustion residues with minor petrogenic input. The high correlations between pyrogenic PAHs to total PAHs (r >0.73, p <0.5), and the Bap/Bep ratio to total PAHs (r = 0.88, p <0.5), suggest that atmospheric deposition and urban runoff are the main deposition pathways. The concentrations of the PAHs in the southern South China Sea fall in the moderate contamination range of 100-1000 ng g-1.
The title compound, C15H13BrO2S, comprises three different substituents bound to a central (and chiral) methine-C atom, i.e. (4-bromo-phen-yl)sulfanyl, benzaldehyde and meth-oxy residues: crystal symmetry generates a racemic mixture. A twist in the mol-ecule is evident about the methine-C-C(carbon-yl) bond as evidenced by the O-C-C-O torsion angle of -20.8 (7)°. The dihedral angle between the bromo-benzene and phenyl rings is 43.2 (2)°, with the former disposed to lie over the oxygen atoms. The most prominent feature of the packing is the formation of helical supra-molecular chains as a result of methyl- and methine-C-H⋯O(carbon-yl) inter-actions. The chains assemble into a three-dimensional architecture without directional inter-actions between them. The nature of the weak points of contacts has been probed by a combination of Hirshfeld surface analysis, non-covalent inter-action plots and inter-action energy calculations. These point to the importance of weaker H⋯H and C-H⋯C inter-actions in the consolidation of the structure.
The title CuII complex, [Cu(C13H11N2OS2)2], features a trans-N2S2 donor set as a result of the CuII atom being located on a crystallographic centre of inversion and being coordinated by thiol-ate-S and imine-N atoms derived from two di-thio-carbazate anions. The resulting geometry is distorted square-planar. In the crystal, π(chelate ring)-π(fur-yl) [inter-centroid separation = 3.6950 (14) Å and angle of inclination = 5.33 (13)°] and phenyl-C-H⋯π(phen-yl) inter-actions sustain supra-molecular layers lying parallel to (02). The most prominent inter-actions between layers, as confirmed by an analysis of the calculated Hirshfeld surface, are phenyl-H⋯H(phen-yl) contacts. Indications for Cu⋯Cg(fur-yl) contacts (Cu⋯Cg = 3.74 Å) were also found. Inter-action energy calculations suggest the contacts between mol-ecules are largely dispersive in nature.
The di-substituted acetyl-ene residue in the title compound, C11H11NO3, is capped at either end by di-methyl-hydroxy and 4-nitro-benzene groups; the nitro substituent is close to co-planar with the ring to which it is attached [dihedral angle = 9.4 (3)°]. The most prominent feature of the mol-ecular packing is the formation, via hy-droxy-O-H⋯O(hy-droxy) hydrogen bonds, of hexa-meric clusters about a site of symmetry . The aggregates are sustained by 12-membered {⋯OH}6 synthons and have the shape of a flattened chair. The clusters are connected into a three-dimensional architecture by benzene-C-H⋯O(nitro) inter-actions, involving both nitro-O atoms. The aforementioned inter-actions are readily identified in the calculated Hirshfeld surface. Computational chemistry indicates there is a significant energy, primarily electrostatic in nature, associated with the hy-droxy-O-H⋯O(hy-droxy) hydrogen bonds. Dispersion forces are more important in the other identified but, weaker inter-molecular contacts.
The title Schiff base compound, C14H10Cl2N2O, features an E configuration about each of the C=N imine bonds. Overall, the mol-ecule is approximately planar with the dihedral angle between the central C2N2 residue (r.m.s. deviation = 0.0371 Å) and the peripheral hy-droxy-benzene and chloro-benzene rings being 4.9 (3) and 7.5 (3)°, respectively. Nevertheless, a small twist is evident about the central N-N bond [the C-N-N-C torsion angle = -172.7 (2)°]. An intra-molecular hy-droxy-O-H⋯N(imine) hydrogen bond closes an S(6) loop. In the crystal, π-π stacking inter-actions between hy-droxy- and chloro-benzene rings [inter-centroid separation = 3.6939 (13) Å] lead to a helical supra-molecular chain propagating along the b-axis direction; the chains pack without directional inter-actions between them. The calculated Hirshfeld surfaces point to the importance of H⋯H and Cl⋯H/H⋯Cl contacts to the overall surface, each contributing approximately 29% of all contacts. However, of these only Cl⋯H contacts occur at separations less than the sum of the van der Waals radii. The aforementioned π-π stacking inter-actions contribute 12.0% to the overall surface contacts. The calculation of the inter-action energies in the crystal indicates significant contributions from the dispersion term.
The crystal and mol-ecular structures of the title triorganotin di-thio-carbamate, [Sn(C6H5)3(C7H14NS2)], are described. The mol-ecular geometry about the metal atom is highly distorted being based on a C3S tetra-hedron as the di-thio-carbamate ligand is asymmetrically chelating to the tin centre. The close approach of the second thione-S atom [Sn⋯S = 2.9264 (4) Å] is largely responsible for the distortion. The mol-ecular packing is almost devoid of directional inter-actions with only weak phenyl-C-H⋯C(phen-yl) inter-actions, leading to centrosymmetric dimeric aggregates, being noted. An analysis of the calculated Hirshfeld surface points to the significance of H⋯H contacts, which contribute 66.6% of all contacts to the surface, with C⋯H/H⋯C [26.8%] and S⋯H/H⋯H [6.6%] contacts making up the balance.
Goniothalamin, a plant styrylpyrone derivative isolated from Goniothalamus andersonii, induced apoptosis in Jurkat T-cells as assessed by the externalisation of phosphatidylserine. Immunoblotting showed processing of caspases-3 and -7 with the appearance of their catalytically active large subunits of 17 and 19 kDa, respectively. Activation of these caspases was further evidenced by detection of poly(ADP-ribose) polymerase cleavage (PARP). Pre-treatment with the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD.FMK) blocked apoptosis and the resultant cleavage of these caspases and PARP. Our results demonstrate that activation of at least two effector caspases is a key feature of goniothalamin-induced apoptosis in Jurkat T-cells.
The title CuII macrocyclic complex salt tetra-hydrate, [Cu(C22H46N6O2)](C2H3O2)2·4H2O, sees the metal atom located on a centre of inversion and coordinated within a 4 + 2 (N4O2) tetra-gonally distorted coordination geometry; the N atoms are derived from the macrocycle and the O atoms from weakly associated [3.2048 (15) Å] acetate anions. Further stability to the three-ion aggregate is provided by intra-molecular amine-N-H⋯O(carboxyl-ate) hydrogen bonds. Hydrogen bonding is also prominent in the mol-ecular packing with amide-N-H⋯O(amide) inter-actions, leading to eight-membered {⋯HNCO}2 synthons, amide-N-H⋯O(water), water-O-H⋯O(carboxyl-ate) and water-O-H⋯O(water) hydrogen bonds featuring within the three-dimensional architecture. The calculated Hirshfeld surfaces for the individual components of the asymmetric unit differentiate the water mol-ecules owing to their distinctive supra-molecular association. For each of the anion and cation, H⋯H contacts predominate (50.7 and 65.2%, respectively) followed by H⋯O/O⋯H contacts (44.5 and 29.9%, respectively).
A microwave-assisted synthesis of 7-amino-1,2,4-triazolo[1,5-a][1,3,5]triazine-2-propanamides was developed using a three-component, catalyst-free reaction of cyanamide and trimethyl orthoformate with 3-(5-amino-1H-1,2,4-triazol-3-yl)propanamides (3). The reaction tolerated structurally diverse substrates and proceeded chemo- and regio-selectively, affording the target compounds in high purity in 5-10 minutes. The convenient chromatography-free isolation and purification of the products add practicality to this method. The structural features of the prepared compounds were investigated using dynamic NMR spectroscopy, X-ray crystallography and computational chemistry calculations. X-ray crystallography performed on a representative compound, 3-(7-amino-1,2,4-triazolo[1,5-a][1,3,5]triazin-2-yl)-N-(4-benzyl)propanamide (4 l), showed the overall molecular conformation to adopt the shape of the letter C. Notable localisation of π-electron density is found within the 1,2,4-triazolo[1,5-a][1,3,5]triazine system; a relatively short C-NH2 bond is consistent with restricted rotation about this bond. This study also presents a detailed analysis of the molecular interactions in 4 l using DFT and QTAIM methods with a focus on the hydrogen-bonding and π-stacking interactions that influence the molecular packing of 4 l. The findings reveal the significant roles of N-H⋅O, N-H⋅N and C-H⋅N interactions, along with electrostatically enhanced π⋅π contacts. A broad screening for insecticidal, fungicidal and herbicidal properties identified several compounds with potent herbicidal activity against Matricaria inodora.
The Cambridge Face Memory Test (CFMT) is one of the most important measures of individual differences in face recognition and for the diagnosis of prosopagnosia. Having two different CFMT versions using a different set of faces seems to improve the reliability of the evaluation. However, at the present time, there is only one Asian version of the test. In this study, we present the Cambridge Face Memory Test - Chinese Malaysian (CFMT-MY), a novel Asian CFMT using Chinese Malaysian faces. In Experiment 1, Chinese Malaysian participants (N = 134) completed two versions of the Asian CFMT and one object recognition test. The CFMT-MY showed a normal distribution, high internal reliability, high consistency and presented convergent and divergent validity. Additionally, in contrast to the original Asian CFMT, the CFMT-MY showed an increasing level of difficulties across stages. In Experiment 2, Caucasian participants (N = 135) completed the two versions of the Asian CFMT and the original Caucasian CFMT. Results showed that the CFMT-MY exhibited the other-race effect. Overall, the CFMT-MY seems to be suitable for the diagnosis of face recognition difficulties and could be used as a measure of face recognition ability by researchers who wish to examine face-related research questions such as individual differences or the other-race effect.
Evidence for C-H···π(CuCl···HNCS) interactions, i.e. C-H···π(quasi-chelate ring) where a six-membered quasi-chelate ring is closed by an N-H···Cl hydrogen bond, is presented based on crystal structure analyses of (Ph3P)2Cu[ROC(=S)N(H)Ph]Cl. Similar intramolecular interactions are identified in related literature structures. Calculations suggest that the energy of attraction provided by such interactions approximates 3.5 kcal mol(-1).
Two independent molecules that differ in terms of rotation about the central S-N bond comprise the asymmetric unit of the title compound 1. The molecules have a V-shape with the dihedral angles between the fused ring system and benzene ring being 79.08(6)° and 72.83(5)°, respectively. The packing is mostly driven by p···p interactions occurring between the tolyl ring of one molecule and the C6 ring of the indole fused ring system of the other. DFT and IRC calculations for these and related 1-(arylsulfonyl)indole molecules showed that the rotational barrier about the S-N bond between conformers is within the 2.5-5.5 kcal/mol range. Crystal data for C16H13NO3S (1): Mr = 299.33, space group Pna21, a = 19.6152(4) Å, b = 11.2736(4) Å, c = 12.6334(3) Å, V = 2793.67(13) Å3, Z = 8, Z' = 2, R = 0.034.
Perovskite-structured lead titanate thin films have been grown on FTO-coated glass substrates from a single-source heterometallic molecular complex, [PbTi(μ2-O2CCF3)4(THF)3(μ3-O)]2 (1), which was isolated in quantitative yield from the reaction of tetraacetatolead(IV), tetrabutoxytitanium(IV), and trifluoroacetic acid from a tetrahydrofuran solution. Complex 1 has been characterized by physicochemical methods such as melting point, microanalysis, FTIR, (1)H and (19)F NMR, thermal analysis, and single-crystal X-ray diffraction (XRD) analysis. Thin films of lead titanate having spherical particles of various sizes have been grown from 1 by aerosol-assisted chemical vapor deposition at 550 °C. The thin films have been characterized by powder XRD, scanning electron microscopy, and energy-dispersive X-ray analysis. An optical band gap of 3.69 eV has been estimated by UV-visible spectrophotometry.