CASE DETAILS: In the present case, the fracture was suspected during the process of removal. The tip of the catheter was notably missing, and an emergency chest radiograph confirmed our diagnosis of a retained fracture of central venous catheter. The retained portion was removed by the interventional radiologist using an endovascular loop snare and delivered through a femoral vein venotomy performed by the surgeon.
CONCLUSION: Endovascular approach to retrieval of retained fractured catheters has helped tremendously to reduce associated morbidity and the need for major surgery. The role of surgery has become limited to instances of failed endovascular retrieval and in remote geographical locations devoid of such specialty.
OBJECTIVE: The main objective of the present review was to highlight the cellular, molecular biology and inflammatory process related to the atheromatous plaques.
METHODS: A thorough literature search of Pubmed, Google and Scopus databases was done.
RESULTS: Atherosclerosis is considered to be a leading cause of death throughout the world. Atherosclerosis involves oxidative damage to the cells with production of reactive oxygen species (ROS). Development of atheromatous plaques in the arterial wall is a common feature. Specific inflammatory markers pertaining to the arterial wall in atherosclerosis may be useful for both diagnosis and treatment. These include Nitric oxide (NO), cytokines, macrophage inhibiting factor (MIF), leucocytes and Pselectin. Modern therapeutic paradigms involving endothelial progenitor cells therapy, angiotensin II type-2 (AT<sub>2</sub>R) and ATP-activated purinergic receptor therapy are notable to mention.
CONCLUSION: Future drugs may be designed aiming three signalling mechanisms of AT<sub>2</sub>R which are (a) activation of protein phosphatases resulting in protein dephosphorylation (b) activation of bradykinin/nitric oxide/cyclic guanosine 3',5'-monophosphate pathway by vasodilation and (c) stimulation of phospholipase A(2) and release of arachidonic acid. Drugs may also be designed to act on ATP-activated purinergic receptor channel type P2X7 molecules which acts on cardiovascular system.