Displaying publications 201 - 220 of 415 in total

Abstract:
Sort:
  1. Seaman DJI, Bernard H, Ancrenaz M, Coomes D, Swinfield T, Milodowski DT, et al.
    Am J Primatol, 2019 08;81(8):e23030.
    PMID: 31328289 DOI: 10.1002/ajp.23030
    The conversion of forest to agriculture continues to contribute to the loss and fragmentation of remaining orang-utan habitat. There are still few published estimates of orang-utan densities in these heavily modified agricultural areas to inform range-wide population assessments and conservation strategies. In addition, little is known about what landscape features promote orang-utan habitat use. Using indirect nest count methods, we implemented surveys and estimated population densities of the Northeast Bornean orang-utan (Pongo pygmaeus morio) across the continuous logged forest and forest remnants in a recently salvage-logged area and oil palm plantations in Sabah, Malaysian Borneo. We then assessed the influence of landscape features and forest structural metrics obtained from LiDAR data on estimates of orang-utan density. Recent salvage logging appeared to have a little short-term effect on orang-utan density (2.35 ind/km 2 ), which remained similar to recovering logged forest nearby (2.32 ind/km 2 ). Orang-utans were also present in remnant forest patches in oil palm plantations, but at significantly lower numbers (0.82 ind/km 2 ) than nearby logged forest and salvage-logged areas. Densities were strongly influenced by variation in canopy height but were not associated with other potential covariates. Our findings suggest that orang-utans currently exist, at least in the short-term, within human-modified landscapes, providing that remnant forest patches remain. We urge greater recognition of the role that these degraded habitats can have in supporting orang-utan populations, and that future range-wide analyses and conservation strategies better incorporate data from human-modified landscapes.
    Matched MeSH terms: Arecaceae
  2. Yan TK, Asari A, Abdullah S, Ismail M, Azmi WA
    Data Brief, 2019 Aug;25:104227.
    PMID: 31367662 DOI: 10.1016/j.dib.2019.104227
    Rhynchophorus ferrugineus or red palm weevil (RPW) is a destructive insect pest of major cultivated palms such as coconut, date and oil palm. One of the control management of RPW is trunk injection using monocrotophos or methamidophos, but these chemicals are found to affect ecosystems and human health. Thus, we aimed to determine a bio-pesticide to replace these synthetic chemicals. We tested the antifeedant activity of three eugenol-based compounds as potential control agent against RPW larvae in vitro condition for two weeks. All these compounds show significant effect as feeding deterrent agent on 4th instar larvae, while WN16 (4-allyl-2-methoxy-1-(4-trifluoromethyl-benzyloxy)-benzene) shows the highest feeding deterrent index (FDI = 64.42%). Here we present the data regarding the biological aspect on treated RPW larvae as well as antifeedant activity index of these eugenol derived compounds.
    Matched MeSH terms: Arecaceae
  3. Ahmadi P, Muharam FM, Ahmad K, Mansor S, Abu Seman I
    Plant Dis, 2017 Jun;101(6):1009-1016.
    PMID: 30682927 DOI: 10.1094/PDIS-12-16-1699-RE
    Ganoderma boninense is a causal agent of basal stem rot (BSR) and is responsible for a significant portion of oil palm (Elaeis guineensis) losses, which can reach US$500 million a year in Southeast Asia. At the early stage of this disease, infected palms are symptomless, which imposes difficulties in detecting the disease. In spite of the availability of tissue and DNA sampling techniques, there is a particular need for replacing costly field data collection methods for detecting Ganoderma in its early stage with a technique derived from spectroscopic and imagery data. Therefore, this study was carried out to apply the artificial neural network (ANN) analysis technique for discriminating and classifying fungal infections in oil palm trees at an early stage using raw, first, and second derivative spectroradiometer datasets. These were acquired from 1,016 spectral signatures of foliar samples in four disease levels (T1: healthy, T2: mildly-infected, T3: moderately infected, and T4: severely infected). Most of the satisfactory results occurred in the visible range, especially in the green wavelength. The healthy oil palms and those which were infected by Ganoderma at an early stage (T2) were classified satisfactorily with an accuracy of 83.3%, and 100.0% in 540 to 550 nm, respectively, by ANN using first derivative spectral data. The results further indicated that the sensitive frond number modeled by ANN provided the highest accuracy of 100.0% for frond number 9 compared with frond 17. This study showed evidence that employment of ANN can predict the early infection of BSR disease on oil palm with a high degree of accuracy.
    Matched MeSH terms: Arecaceae
  4. Omidvar V, Siti Nor Akmar A, Marziah M, Maheran AA
    Plant Cell Rep, 2008 Sep;27(9):1451-9.
    PMID: 18563415 DOI: 10.1007/s00299-008-0565-2
    The promoter of the oil palm metallothionein-like gene (MT3-A) demonstrated mesocarp-specific activity in functional analysis using transient expression assay of reporter gene in bombarded oil palm tissue slices. In order to investigate the tissue-specific expression of polyhydroxybutyrate (PHB) biosynthetic pathway genes, a multi-gene construct carrying PHB genes fused to the oil palm MT3-A promoter was co-transferred with a construct carrying GFP reporter gene using microprojectile bombardment targeting the mesocarp and leaf tissues of the oil palm. Transcriptional analysis using RT-PCR revealed successful transcription of all the three phbA, phbB, and phbC genes in transiently transformed mesocarp but not in transiently transformed leaf tissues. Furthermore, all the three expected sizes of PHB-encoded protein products were only detected in transiently transformed mesocarp tissues on a silver stained polyacrylamide gel. Western blot analysis using polyclonal antibody specific for phbB product confirmed successful translation of phbB mRNA transcript into protein product. This study provided valuable information, supporting the future engineering of PHB-producing transgenic palms.
    Matched MeSH terms: Arecaceae/cytology; Arecaceae/genetics*; Arecaceae/metabolism
  5. Swaray S, Y Rafii M, Din Amiruddin M, Firdaus Ismail M, Jamian S, Jalloh M, et al.
    Insects, 2021 Mar 04;12(3).
    PMID: 33806613 DOI: 10.3390/insects12030221
    This study was conducted to assess the Elaeidobius kamerunicus (EK) population density among the biparental dura × pisifera hybrids' palms on deep peat-soil. Twenty-four hybrids derived from 10 genetic sources were used. Variance analysis showed that the EK population density varies between different oil palm hybrids, with a more noticeable variation of a low population mean in the male weevil across the hybrids. The highest weevil population mean/spikelet was attained on the third day of anthesis. The maximum monthly population of EK/spikelet (12.81 ± 0.23) and population density of EK (1846.49 ± 60.69) were recorded in January. Accordingly, 41.67% of the hybrids recorded an EK population density greater than the trial means of 973.68 weevils. Hybrid ECPHP550 had the highest mean of EK/spikelet (10.25 ± 0.11) and the highest population density of EK/palm (1241.39 ± 73.74). The parental mean population was 963.24 weevils and parent Deli-Banting × AVROS recorded the highest EK population density (1173.01). The overall results showed a notable disparity in the EK population among the biparental hybrids. Parental Deli-Banting × AVROS and hybrid ECPHP550 could be more useful to optimize the weevil population for pollination improvements in palm plantations. However, we suggest that volatile production should be included as a desirable trait in oil palm selective breeding.
    Matched MeSH terms: Arecaceae
  6. Harith-Fadzilah N, Haris-Hussain M, Abd Ghani I, Zakaria A, Amit S, Zainal Z, et al.
    Insects, 2020 Jun 30;11(7).
    PMID: 32630104 DOI: 10.3390/insects11070407
    The red palm weevil (RPW) is a stem boring Coleoptera that decimates host palm trees from within. The challenge of managing this pest is due to a lack of physical symptoms during the early stages of infestation. Investigating the physiological changes that occur within RPW-infested palm trees may be useful in establishing a new approach in RPW detection. In this study, the effects of RPW infestation were investigated in Elaeis guineensis by observing changes in physical and physiological parameters during the progress of infestation by visual inspection and the comparison of growth, gas exchange, stomatal conductance, and chlorophyll content between the non-infested control, physically wounded, and RPW-infested E. guineensis groups. During the study period, four distinct levels of physical infestation were observed and recorded. The RPW-infested group displayed significantly lower maximum photosynthesis activity (Amax) starting from the third week post-infestation. However, growth in terms of change in plant height and stem circumference, leaves' stomatal conductance, and chlorophyll content were not significantly different between the three groups during the duration of the study. The significant drop in photosynthesis was observed one week before physical changes appeared. This suggests the promising utilisation of photosynthesis activity as a signal for detecting RPW infestation at the early stage of attacks, which could be useful for integration in integrated pest management (IPM).
    Matched MeSH terms: Arecaceae
  7. Lam SS, Yek PNY, Ok YS, Chong CC, Liew RK, Tsang DCW, et al.
    J Hazard Mater, 2020 05 15;390:121649.
    PMID: 31753673 DOI: 10.1016/j.jhazmat.2019.121649
    Improving the sustainability and cost-effectiveness of biochar production is crucial to meet increased global market demand. Here, we developed a single-step microwave steam activation (STMSA) as a simplified yet efficient method to produce microwave activated biochar (MAB) from waste palm shell (WPS). The STMSA recorded a higher heating rate (70 °C/min) and higher conversion (45 wt%) of WPS into highly microporous MAB (micropore surface area of 679.22 m2/g) in contrast with the conventional heating approach (≤ 12-17 wt%). The MAB was then applied as biosorbent for hazardous landfill leachate (LL) treatment and the adsorption performance was compared with commercial activated carbon under different pH, adsorbent quantity, adsorbate concentrations, and contact times. The MAB demonstrated high adsorption capacity, achieving maximum adsorption efficiency at 595 mg/g and 65 % removal of chemical oxygen demand (COD) with 0.4 g/L of adsorbent amount under optimal acidic conditions (pH ≈ 2-3) after 24 h of contact time. The Freundlich isotherm and pseudo second-order kinetic models were well-fitted to explain the equilibrium adsorption and kinetics. The results indicate the viability of STMSA as a fast and efficient approach to produce activated biochar as a biosorbent for the treatment of hazardous landfill leachate.
    Matched MeSH terms: Arecaceae
  8. Nusaibah SA, Siti Nor Akmar A, Idris AS, Sariah M, Mohamad Pauzi Z
    Plant Physiol Biochem, 2016 Dec;109:156-165.
    PMID: 27694009 DOI: 10.1016/j.plaphy.2016.09.014
    Understanding the mechanism of interaction between the oil palm and its key pathogen, Ganoderma spp. is crucial as the disease caused by this fungal pathogen leads to a major loss of revenue in leading palm oil producing countries in Southeast Asia. Here in this study, we assess the morphological and biochemical changes in Ganoderma disease infected oil palm seedling roots in both resistant and susceptible progenies. Rubber woodblocks fully colonized by G. boninense were applied as a source of inoculum to artificially infect the roots of resistant and susceptible oil palm progenies. Gas chromatography-mass spectrometry was used to measure an array of plant metabolites in 100 resistant and susceptible oil palm seedling roots treated with pathogenic Ganoderma boninense fungus. Statistical effects, univariate and multivariate analyses were used to identify key-Ganoderma disease associated metabolic agitations in both resistant and susceptible oil palm root tissues. Ganoderma disease related defense shifts were characterized based on (i) increased antifungal activity in crude extracts, (ii) increased lipid levels, beta- and gamma-sitosterol particularly in the resistant progeny, (iii) detection of heterocyclic aromatic organic compounds, benzo [h] quinoline, pyridine, pyrimidine (iv) elevation in antioxidants, alpha- and beta-tocopherol (iv) degraded cortical cell wall layers, possibly resulting from fungal hydrolytic enzyme activity needed for initial penetration. The present study suggested that plant metabolites mainly lipids and heterocyclic aromatic organic metabolites could be potentially involved in early oil palm defense mechanism against G. boninense infection, which may also highlight biomarkers for disease detection, treatment, development of resistant variety and monitoring.
    Matched MeSH terms: Arecaceae/metabolism*; Arecaceae/microbiology*; Arecaceae/ultrastructure
  9. Siddiqui Y, Surendran A, Paterson RRM, Ali A, Ahmad K
    Saudi J Biol Sci, 2021 May;28(5):2840-2849.
    PMID: 34012325 DOI: 10.1016/j.sjbs.2021.02.016
    The rapid expansion of oil palm (OP) has led to its emergence as a commodity of strategic global importance. Palm oil is used extensively in food and as a precursor for biodiesel. The oil generates export earnings and bolsters the economy of many countries, particularly Indonesia and Malaysia. However, oil palms are prone to basal stem rot (BSR) caused by Ganoderma boninense which is the most threatening disease of OP. The current control measures for BSR management including cultural practices, mechanical and chemical treatment have not proved satisfactory. Alternative control measures to overcome the G. boninense problem are focused on the use of biological control agents and many potential bioagents were identified with little proven practical application. Planting OP varieties resistant to G. boninense could provide the ideal long-term solution to basal stem rot. The total resistance of palms to G. boninense has not yet been reported, and few examples of partial resistances have been observed. Importantly, basidiospores are now recognized as the method by which the disease is spread, and control methods require to be revaluated because of this phenomenon. Many methods developed to prevent the spread of the disease effectively are only tested at nursery levels and are only reported in national journals inhibiting the development of useful techniques globally. The initial procedures employed by the fungus to infect the OP require consideration in terms of the physiology of the growth of the fungus and its possible control. This review assesses critically the progress that has been made in BSR development and management in OP.
    Matched MeSH terms: Arecaceae
  10. Sakeh NM, Abdullah SNA, Bahari MNA, Azzeme AM, Shaharuddin NA, Idris AS
    BMC Plant Biol, 2021 Jan 22;21(1):59.
    PMID: 33482731 DOI: 10.1186/s12870-020-02812-7
    BACKGROUND: Hemibiotrophic pathogen such as the fungal pathogen Ganoderma boninense that is destructive to oil palm, manipulates host defense mechanism by strategically switching from biotrophic to necrotrophic phase. Our previous study revealed two distinguishable expression profiles of oil palm genes that formed the basis in deducing biotrophic phase at early interaction which switched to necrotrophic phase at a later stage of infection.

    RESULTS: The present report is a continuing study from our previous published transcriptomic profiling of oil palm seedlings against G. boninense. We focused on identifying differentially expressed genes (DEGs) encoding transcription factors (TFs) from the same RNA-seq data; resulting in 106 upregulated and 108 downregulated TFs being identified. The DEGs are involved in four established defense-related pathways responsible for cell wall modification, reactive oxygen species (ROS)-mediated signaling, programmed cell death (PCD) and plant innate immunity. We discovered upregulation of JUNGBRUNNEN 1 (EgJUB1) during the fungal biotrophic phase while Ethylene Responsive Factor 113 (EgERF113) demonstrated prominent upregulation when the palm switches to defense against necrotrophic phase. EgJUB1 was shown to have a binding activity to a 19 bp palindromic SNBE1 element, WNNYBTNNNNNNNAMGNHW found in the promoter region of co-expressing EgHSFC-2b. Further in silico analysis of promoter regions revealed co-expression of EgJUB1 with TFs containing SNBE1 element with single nucleotide change at either the 5th or 18th position. Meanwhile, EgERF113 binds to both GCC and DRE/CRT elements promoting plasticity in upregulating the downstream defense-related genes. Both TFs were proven to be nuclear-localized based on subcellular localization experiment using onion epidermal cells.

    CONCLUSION: Our findings demonstrated unprecedented transcriptional reprogramming of specific TFs potentially to enable regulation of a specific set of genes during different infection phases of this hemibiotrophic fungal pathogen. The results propose the intricacy of oil palm defense response in orchestrating EgJUB1 during biotrophic and EgERF113 during the subsequent transition to the necrotrophic phase. Binding of EgJUB1 to SNBE motif instead of NACBS while EgERF113 to GCC-box and DRE/CRT motifs is unconventional and not normally associated with pathogen infection. Identification of these phase-specific oil palm TFs is important in designing strategies to tackle or attenuate the progress of infection.

    Matched MeSH terms: Arecaceae/genetics*; Arecaceae/immunology; Arecaceae/microbiology
  11. Khairiatul Nabilah Jansar, Ahmad Muhaimin Roslan, Mohd Ali Hassan
    MyJurnal
    Oil palm (Elaeis guineensis Jacq.) is one of the most planted trees in Malaysia for the palm oil production. Thus, solid biomass had been generated from this industry such as empty fruit bunch, shell, mesocarp fibre, frond and trunk produced that causes problematic to the nation and expected to escalate up to 85-110 million tonnes by 2020. Besides that, palm oil mill effluent and excessive steam also generated from the production of palm oil. In situ hydrothermal pretreatment means the utilisation of excessive steam produced by the oil palm mill and at the same time, generating value added product as well as reducing the biomass. Oil palm biomass is rich in lignocellulosic materials which comprised of lignin, hemicellulose and cellulose. Refinement of lignocellulosic from oil palm biomass can be utilised to form fermentable sugar, bioethanol and other potential chemicals. Recalcitrant property of lignocellulosic reduces the ability of enzymes to penetrate, thus pretreatment is required prior to hydrolysis process. Pretreatment can be either physical, chemical, biological or combined. In this review paper, three types of hydrothermal pretreatment were discussed as suitable in situ pretreatment process for oil palm biomass; in palm oil mill. The suitability was measured based on the availability of excess steam and energy in the mill. Furthermore, physicochemical pretreatment also facilitate the saccharification process, whereby it loosened the lignocellulose structure and increase the surface area. The effects and factors in choosing right pretreatment are highlighted in this paper.
    Matched MeSH terms: Arecaceae
  12. Goh YK, Marzuki NF, Tan SY, Tan SS, Tung HJ, Goh YK, et al.
    Mycology, 2016;7(1):36-44.
    PMID: 30123614 DOI: 10.1080/21501203.2015.1137985
    The influence of different medium components (glucose, sucrose, and fructose) on the growth of different Ganoderma isolates and species was investigated using mixture design. Ten sugar combinations based on three simple sugars were generated with two different concentrations, namely 3.3% and 16.7%, which represented low and high sugar levels, respectively. The media were adjusted to either pH 5 or 8. Ganoderma isolates (two G. boninense from oil palm, one Ganoderma species from coconut palm, G. lingzhi, and G. australe from tower tree) grew faster at pH 8. Ganoderma lingzhi proliferated at the slowest rate compared to all other tested Ganoderma species in all the media studied. However, G. boninense isolates grew the fastest. Different Ganoderma species were found to have different sugar preferences. This study illustrated that the mixture design can be used to determine the optimal combinations of sugar or other nutrient/chemical components of media for fungal growth.
    Matched MeSH terms: Arecaceae
  13. Noorhariza Mohd Zaki, Rozana Rosli, Ting NC, Singh R, Ismanizan Ismail
    Ten Elaeis oleifera microsatellite markers were developed and characterised from 1500 sequences of the E. oleifera genomic library. The markers were utilised to assess the genetic diversity of E. oleifera germplasm collections from four South American countries (Colombia, Costa Rica, Panama and Honduras). The number of alleles per-locus varied from 2 to 11 and the observed and expected heterozygosity ranged from 0.0685 to 0.9853 and 0.1393 to 0.8216 respectively. Majority of the markers showed transferability to Elaeis guineensis while two markers showed transferability across Arecaceae taxa. These E. oleifera microsatellite markers are expected to become useful tools to determine the population structure and conservation of E. oleifera populations.
    Matched MeSH terms: Arecaceae
  14. Lewis K, Rumpang E, Kho LK, McCalmont J, Teh YA, Gallego-Sala A, et al.
    Sci Rep, 2020 02 10;10(1):2230.
    PMID: 32041975 DOI: 10.1038/s41598-020-58982-9
    The recent expansion of oil palm (OP, Elaeis guineensis) plantations into tropical forest peatlands has resulted in ecosystem carbon emissions. However, estimates of net carbon flux from biomass changes require accurate estimates of the above ground biomass (AGB) accumulation rate of OP on peat. We quantify the AGB stocks of an OP plantation on drained peat in Malaysia from 3 to 12 years after planting using destructive harvests supported by non-destructive surveys of a further 902 palms. Peat specific allometric equations for palm (R2 = 0.92) and frond biomass are developed and contrasted to existing allometries for OP on mineral soils. Allometries are used to upscale AGB estimates to the plantation block-level. Aboveground biomass stocks on peat accumulated at ~6.39 ± 1.12 Mg ha-1 per year in the first 12 years after planting, increasing to ~7.99 ± 0.95 Mg ha-1 yr-1 when a 'perfect' plantation was modelled. High inter-palm and inter-block AGB variability was observed in mature classes as a result of variations in palm leaning and mortality. Validation of the allometries defined and expansion of non-destructive inventories across alternative plantations and age classes on peat would further strengthen our understanding of peat OP AGB accumulation rates.
    Matched MeSH terms: Arecaceae
  15. Azhar B, Saadun N, Prideaux M, Lindenmayer DB
    J Environ Manage, 2017 Dec 01;203(Pt 1):457-466.
    PMID: 28837912 DOI: 10.1016/j.jenvman.2017.08.021
    Most palm oil currently available in global markets is sourced from certified large-scale plantations. Comparatively little is sourced from (typically uncertified) smallholders. We argue that sourcing sustainable palm oil should not be determined by commercial certification alone and that the certification process should be revisited. There are so-far unrecognized benefits of sourcing palm oil from smallholders that should be considered if genuine biodiversity conservation is to be a foundation of 'environmentally sustainable' palm oil production. Despite a lack of certification, smallholder production is often more biodiversity-friendly than certified production from large-scale plantations. Sourcing palm oil from smallholders also alleviates poverty among rural farmers, promoting better conservation outcomes. Yet, certification schemes - the current measure of 'sustainability' - are financially accessible only for large-scale plantations that operate as profit-driven monocultures. Industrial palm oil is expanding rapidly in regions with weak environmental laws and enforcement. This warrants the development of an alternative certification scheme for smallholders. Greater attention should be directed to deforestation-free palm oil production in smallholdings, where production is less likely to cause large scale biodiversity loss. These small-scale farmlands in which palm oil is mixed with other crops should be considered by retailers and consumers who are interested in promoting sustainable palm oil production. Simultaneously, plantation companies should be required to make their existing production landscapes more compatible with enhanced biodiversity conservation.
    Matched MeSH terms: Arecaceae
  16. Yahaghi J, Sorooshian S
    Sci Eng Ethics, 2018 04;24(2):819-820.
    PMID: 28281150 DOI: 10.1007/s11948-017-9892-4
    Matched MeSH terms: Arecaceae
  17. Kunjirama M, Saman N, Johari K, Song ST, Kong H, Cheu SC, et al.
    Environ Sci Pollut Res Int, 2017 Jun;24(17):15167-15181.
    PMID: 28500549 DOI: 10.1007/s11356-017-9117-z
    This study was conducted to investigate the potential application of oil palm empty fruit branches (OPEFB) as adsorbents to remove organic methylmercurry, MeHg(II), and inorganic Hg(II) from aqueous solution. The OPEFB was functionalized with amine containing ligand namely 3-ureidopropyltriethoxysilane (UPTES) aiming for better adsorption performance towards both mercury ions. The adsorption was found to be dependent on initial pH, initial concentraton, temperatures, and contact time. The maximum adsorption capacities (Qm.exp) of Hg(II) adsorption onto OPEFB and UPTES-OPEFB were 0.226 and 0.773 mmol/g, respectively. The Qm.exp of MeHg(II) onto OPEFB, however, was higher than UPTES-OPEFB. The adsorption kinetic data obeyed the Elovich model and the adsorption was controlled by the film-diffusion step. The calculated thermodynamic parameters indicate an endothermic adsorption process. Adsorption data analysis indicates that the adsorption mechanism may include ion-exchange, complexation, and physisorption interactions. The potential applications of adsorbents were demonstrated using oilfield produced water and natural gas condensate. The UPTES-OPEFB offered higher selectivity towards both mercury ions than OPEFB. The regenerability studies indicated that the adsorbent could be reused for multiple cycles.
    Matched MeSH terms: Arecaceae
  18. Sabiha-Hanim S, Mohd Noor MA, Rosma A
    Carbohydr Polym, 2015 Jan 22;115:533-9.
    PMID: 25439929 DOI: 10.1016/j.carbpol.2014.08.087
    Steam explosion of oil palm frond has been carried out under different temperatures between 180 and 210°C for 4 min (severity of 2.96-3.84) after impregnation of the frond chips with water or KOH solution. The effects of impregnation and steam explosion conditions of oil palm fronds on the water soluble fraction and insoluble fraction were investigated. The maximum yield of hemicelluloses in water soluble fractions recovered was 23.49% and 25.33% for water and KOH impregnation, treated with steam explosion at temperature of 210°C (severity of 3.84) with a fractionation efficiency of 77.30% and 83.32%, respectively. Under this condition, the water insoluble fractions contained celluloses at 60.83% and 64.80% for water and KOH impregnation, respectively. The steam explosion temperature of 210°C for 4 min (logR(o) 3.84) was found to be the best condition in the extraction of hemicelluloses from OPF for both types of impregnation.
    Matched MeSH terms: Arecaceae*
  19. Vakili M, Rafatullah M, Ibrahim MH, Abdullah AZ, Salamatinia B, Gholami Z
    PMID: 24984835 DOI: 10.1007/978-3-319-06746-9_3
    Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The advantages that oil palm biomass has includes the following:available and exists in abundance, appears to be effective technically, and can be integrated into existing processes. Despite these advantages, oil palm biomasses have disadvantages such as low adsorption capacity, increased COD, BOD and TOC. These disadvantages can be overcome by modifying the biomass either chemically or thermally. Such modification creates a charged surface and increases the heavy metal ion binding capacity of the adsorbent.
    Matched MeSH terms: Arecaceae/chemistry*
  20. Then YY, Ibrahim NA, Zainuddin N, Ariffin H, Yunus WM, Chieng BW
    Int J Mol Sci, 2014;15(9):15344-57.
    PMID: 25177865 DOI: 10.3390/ijms150915344
    In this paper, superheated steam (SHS) was used as cost effective and green processing technique to modify oil palm mesocarp fiber (OPMF) for biocomposite applications. The purpose of this modification was to promote the adhesion between fiber and thermoplastic. The modification was carried out in a SHS oven at various temperature (200-230 °C) and time (30-120 min) under normal atmospheric pressure. The biocomposites from SHS-treated OPMFs and poly(butylene succinate) (PBS) at a weight ratio of 70:30 were prepared by melt blending technique. The mechanical properties and dimensional stability of the biocomposites were evaluated. This study showed that the SHS treatment increased the roughness of the fiber surface due to the removal of surface impurities and hemicellulose. The tensile, flexural and impact properties, as well as dimensional stability of the biocomposites were markedly enhanced by the presence of SHS-treated OPMF. Scanning electron microscopy analysis showed improvement of interfacial adhesion between PBS and SHS-treated OPMF. This work demonstrated that SHS could be used as an eco-friendly and sustainable processing method for modification of OPMF in biocomposite fabrication.
    Matched MeSH terms: Arecaceae/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links