Displaying publications 201 - 220 of 874 in total

Abstract:
Sort:
  1. Lai HY, Lim YY, Tan SP
    Biosci Biotechnol Biochem, 2009 Jun;73(6):1362-6.
    PMID: 19502733
    Leaf extracts of five medicinal ferns, Acrostichum aureum L. (Pteridaceae), Asplenium nidus L. (Aspleniaceae), Blechnum orientale L. (Blechnaceae), Cibotium barometz (L.) J. Sm. (Cyatheaceae) and Dicranopteris linearis (Burm.) underwood var. linearis (Gleicheniaceae), were investigated for their total phenolic content (TPC), and antioxidative, tyrosinase inhibiting and antibacterial activities. The antioxidative activity was measured by assays for radical scavenging against 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric ion reducing power (FRP), beta-carotene bleaching (BCB) and ferrous ion chelating (FIC). The results revealed B. orientale to possess the highest amount of total polyphenols and strongest potential as a natural antioxidative, tyrosinase inhibiting and antibacterial agent as demonstrated by its strong activities in all related bioassays. The other ferns with antioxidative potential were C. barometz and D. linearis. Except for A. aureum, all ferns showed antibacterial activity which may justify their usage in traditional medicines.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  2. Wei AC, Ali MA, Yoon YK, Ismail R, Choon TS, Kumar RS
    Bioorg Med Chem Lett, 2013 Mar 1;23(5):1383-6.
    PMID: 23352268 DOI: 10.1016/j.bmcl.2012.12.069
    A series of fourteen dispiropyrrolidines were synthesized using [3+2]-cycloaddition reactions and were screened for their antimycobacterial activity against Mycobacterium tuberculosis H(37)Rv in HTS (High Throughput Screen). Most of the compounds showed moderate to good activity with MIC of less than 20 μM. Compound 4'-(4-bromophenyl)-1'-methyldispiro[acenaphthylene-1,2'-pyrrolidine-3',2″-indane]-2,1″(1H)-dione (4c) was found to be the most active with MIC of 12.50 μM.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  3. Ponnuchamy S, Kanchithalaivan S, Ranjith Kumar R, Ali MA, Choon TS
    Bioorg Med Chem Lett, 2014 Feb 15;24(4):1089-93.
    PMID: 24472146 DOI: 10.1016/j.bmcl.2014.01.007
    A series of novel hybrid heterocycles comprising arylidene thiazolidine-2,4-dione and 1-cyclopropyl-2-(2-fluorophenyl)ethanone were synthesized. These compounds were evaluated for their antimycobacterial activity against Mycobacterium tuberculosis H37Rv in High Throughput Screen. Most of the hybrid arylidene thiazolidine-2,4-diones displayed moderate to good activity with MIC of less than 50 μM. Compound 1m exhibited maximum potency being 5.87 fold more active at EC50 and 6.26 fold more active at EC90 than the standard drug pyrimethamine.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  4. Lean SS, Yeo CC, Suhaili Z, Thong KL
    Int J Antimicrob Agents, 2015 Feb;45(2):178-82.
    PMID: 25481460 DOI: 10.1016/j.ijantimicag.2014.10.015
    Acinetobacter baumannii has emerged as an important nosocomial pathogen owing to its increasing resistance to most, if not all, antibiotics in clinical use. We recently reported the occurrence of extensively drug-resistant (XDR) A. baumannii isolates in a Malaysian tertiary hospital. The genome of one of these XDR isolates (A. baumannii AC12) was completely sequenced and comparative genome analyses were performed to elucidate the genetic basis of its antimicrobial resistance. The A. baumannii AC12 genome consists of a 3.8 Mbp circular chromosome and an 8731 bp cryptic plasmid, pAC12. It belongs to the ST195 lineage and is most closely related to A. baumannii BJAB0715 as well as other strains of the international clone III (IC-III) group. Two antibiotic resistance islands (RIs), designated AC12-RI1 and AC12-RI2, were found in the AC12 chromosome along with a 7 kb Tn1548::armA island conferring resistance to aminoglycosides and macrolides. The 22.8 kb AC12-RI1 interrupts the comM gene and harbours the carbapenem resistance gene blaOXA-23 flanked by ISAba1 within a Tn2006-like structure. AC12-RI1 also harbours resistance determinants for aminoglycosides, tetracyclines and sulphonamides. The 10.3 kb IS26-flanked AC12-RI2 is a derivative of AbGRI2-1, containing aphA1b and blaTEM genes (conferring aminoglycoside and β-lactam resistance, respectively). The presence of numerous genes mediating resistance to various antibiotics in novel RI structures as well as other genes encoding drug transporters and efflux pumps in A. baumannii AC12 most likely contributed to its XDR characteristics.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  5. Sabet NS, Subramaniam G, Navaratnam P, Sekaran SD
    Int J Antimicrob Agents, 2007 May;29(5):582-5.
    PMID: 17314034
    A triplex real-time polymerase chain reaction (PCR) assay was used for the simultaneous detection of mecA (methicillin resistance), ermA (erythromycin resistance) and femA (Staphylococcus aureus identification) genes in a single assay. Among 93 clinical S. aureus hospital isolates, there were 48 methicillin-resistant S. aureus (MRSA) and 45 methicillin-sensitive S. aureus (MSSA) isolates. Screening the isolates using the triplex real-time PCR assay, the mecA, ermA and femA genes were detected in all MRSA isolates. The triplex real-time PCR assay was completed within 3h and is a useful genotypic method for detecting the resistance determinants as well as for the identification of S. aureus isolates. These findings will assist the clinical laboratory in identifying these resistance genes and S. aureus rapidly, thus benefiting patient therapy. This study represents a valuable source of information for researchers to study the local antibiotic resistance pattern, which can increase our knowledge of the antibiotic resistance profile, using real-time PCR technology.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  6. Norazah A, Koh YT, Ghani Kamel A, Alias R, Lim VK
    Int J Antimicrob Agents, 2001 May;17(5):411-4.
    PMID: 11337230
    Four hundred methicillin-resistant Staphylococcus aureus strains (MRSA) from different geographical areas in Malaysia were tested for mupirocin susceptibility using minimum inhibitory concentration (MIC) determination. The majority of these strains (98.75%) were susceptible to mupirocin with MICs of < or = 4 mg/l. Fifty-percent of these strains had MICs of 0.125 mg/l or less while 90% of the strains had MICs of 1 mg/l or less. Mupirocin resistance was detected in five strains (1.25%) and one of these (0.25%) had an MIC of 64 mg/l and the other four strains (1%), high-level resistance with MICs > 512 mg/l. Even though the rate of mupirocin resistance in MRSA is still low in Malaysia, its presence calls for a strict policy on mupirocin usage in Malaysian hospitals.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  7. Rohani MY, Raudzah A, Lau MG, Zaidatul AA, Salbiah MN, Keah KC, et al.
    Int J Antimicrob Agents, 2000 Jan;13(3):209-13.
    PMID: 10724026
    Isolates of 390 Staphylococcus aureus were tested against 13 different antibiotics by a disc diffusion method as recommended by the National Committee for Clinical Laboratory Standards (NCCLS). Strains were isolated from blood (5.7%), cerebrospinal fluid (0.5%), respiratory tract (11.8%), pus and wound (73.3%), urine (1.8%), genital specimens (1.0%) and other specimens (4.3%). Only 4.6% of the isolates were fully susceptible to all the drugs tested. Resistance to penicillin was 94.1%, methicillin, 39.7%, chloramphenicol, 8.5%, ciprofloxacin, 29.2%, clindamycin, 2.1%, erythromycin, 45.9% gentamicin, 40.5%; rifampicin, 3.3% tetracycline, 47.2%, co-trimoxazole, 38.5%, mupirocin, 2.8%, fusidic acid, 3.6%. None of the isolates was resistant to vancomycin. The susceptibility of methicillin-resistant strains to erythromycin, gentamicin, tetracycline and ciprofloxacin was low, while clindamycin, fusidic acid, mupirocin, and rifampicin remained active.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  8. AlMatar M, Albarri O, Makky EA, Var I, Köksal F
    Mini Rev Med Chem, 2020;20(18):1908-1916.
    PMID: 32811410 DOI: 10.2174/1389557520666200818211405
    The need for new therapeutics and drug delivery systems has become necessary owing to the public health concern associated with the emergence of multidrug-resistant microorganisms. Among the newly discovered therapeutic agents is cefiderocol, which was discovered by Shionogi Company, Japan as an injectable siderophore cephalosporin. Just like the other β-lactam antibiotics, cefiderocol exhibits antibacterial activity via cell wall synthesis inhibition, especially in Gram negative bacteria (GNB); it binds to the penicillin-binding proteins, but its unique attribute is that it crosses the periplasmic space of bacteria owing to its siderophore-like attribute; it also resists the activity of β-lactamases. Among all the synthesized compounds with the modified C-7 side chain, cefiderocol (3) presented the best and well-balanced activity against multi-drug resistant (MDR) Gram negative bacteria, including those that are resistant to carbapenem. İn this article, an overview of the recent studies on cefiderocol was presented.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  9. Chung WY, Zhu Y, Mahamad Maifiah MH, Shivashekaregowda NKH, Wong EH, Abdul Rahim N
    J Antibiot (Tokyo), 2021 02;74(2):95-104.
    PMID: 32901119 DOI: 10.1038/s41429-020-00366-2
    Antimicrobial resistance (AMR) threatens the effective prevention and treatment of a wide range of infections. Governments around the world are beginning to devote effort for innovative treatment development to treat these resistant bacteria. Systems biology methods have been applied extensively to provide valuable insights into metabolic processes at system level. Genome-scale metabolic models serve as platforms for constraint-based computational techniques which aid in novel drug discovery. Tools for automated reconstruction of metabolic models have been developed to support system level metabolic analysis. We discuss features of such software platforms for potential users to best fit their purpose of research. In this work, we focus to review the development of genome-scale metabolic models of Gram-negative pathogens and also metabolic network approach for identification of antimicrobial drugs targets.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  10. Walayat K, Ahmad M, Rasul A, Aslam S, Anjum MN, Sultan S, et al.
    Pak J Pharm Sci, 2020 Mar;33(2(Supplementary)):855-860.
    PMID: 32863262
    The drug resistance phenomenon in microbes is resulting in the ineffectiveness of available drugs to treat the infections. Thus, there is a continued need to discover new molecules to combat the drug resistance phenomenon. Norfloxacin is a fluoroquinolone antibiotic that is used for the treatment of urinary tract infections. In this research work, norfloxacin is structurally modified by hybridizing with a range of substituted acetohydrazidic moieties through a multistep reaction. The first step involves the coupling of norfloxacin 1 with methyl chloroacetate followed by the treatment with hydrazine hydrate to result in corresponding acetohydrazide 3. A range of substituted benzaldehydes were reacted with the acetohydrazide to form the targeted series of norfloxacin derivatives 4a-i. The final compounds were screened for antimicrobial activity. Among the tested compounds, 4c, 4d, 4e and 4f displayed better antifungal activity against F.avenaceum, while compound 4c and 4e were active against F. bubigeum.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  11. Aziz-Ur-Rehman -, Khan SG, Bokhari TH, Anjum F, Akhter N, Rasool S, et al.
    Pak J Pharm Sci, 2020 Mar;33(2(Supplementary)):871-876.
    PMID: 32863264
    A novel series of 5-(3-Chlorophenyl)-2-((N-(substituted)-2-acetamoyl)sulfanyl)-1,3,4-oxadiazole derivatives was efficiently synthesized and screened for antibacterial, hemolytic and thrombolytic activities. The molecule 7c remained the best inhibitor of all selected bacterial strains and furthermore possessed very low toxicity, 8.52±0.31. Compound 7a 7b and 7f showed very good thrombolytic activity relative to Streptokinase employed as reference drug. In addition to low toxicity and moderately good thrombolytic activity, the synthesized compounds possessed excellent to moderate antibacterial activity, relative to ciprofloxacin. All compounds especially 7b and 7f can be consider for further clinical studies and might be helpful in synthesis of new drugs for treatment of cardiovascular diseases.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  12. Yan LP, Gopinath SCB, Anbu P, Kasim FH, Zulhaimi HI, Yaakub ARW
    Prep Biochem Biotechnol, 2020;50(10):1053-1062.
    PMID: 32597353 DOI: 10.1080/10826068.2020.1783678
    This research comprehends iron-oxide nanoparticle (IONP) production, the apparent metallic nanostructure with unique superparamagnetic properties. Durian-rind-extract was utilized to synthesize IONP and the color of reaction mixture becomes dark brown, indicated the formation of IONPs and the peak was observed at ∼330 nm under UV-visible spectroscopy. The morphological observation under high-resolution microscopies has revealed the spherical shape and the average size (∼10 nm) of IONP. The further support was rendered by EDX-analysis showing apparent iron and oxygen peaks. XRD results displayed the crystalline planes with (110) and (300) planes at 2θ of 35.73° and 63.53°, respectively. XPS-data has clearly demonstrated the presence of Fe2P and O1s peaks. The IONPs were successfully capped by the polyphenol compounds from durian-rind-extract as evidenced by the representative peaks between 1633 and 595 cm-1 from FTIR analysis. The antimicrobial potentials of IONPs were evidenced by the disk-diffusion assay. The obtained results have abundant attention and being actively explored owing to their beneficial applications.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  13. Masri A, Abdelnasir S, Anwar A, Iqbal J, Numan A, Jagadish P, et al.
    Appl Microbiol Biotechnol, 2021 Apr;105(8):3315-3325.
    PMID: 33797573 DOI: 10.1007/s00253-021-11221-1
    BACKGROUND: Conducting polymer based nanocomposites are known to be effective against pathogens. Herein, we report the antimicrobial properties of multifunctional polypyrrole-cobalt oxide-silver nanocomposite (PPy-Co3O4-AgNPs) for the first time. Antibacterial activities were tested against multi-drug-resistant Gram-negative Escherichia coli (E. coli) and Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) bacteria, while antiamoebic effects were assessed against opportunistic protist Acanthamoeba castellanii (A. castellanii).

    RESULTS: The ternary nanocomposite containing conducting polymer polypyrrole, cobalt oxide, and silver nanoparticles showed potent antimicrobial effects against these pathogens. The antibacterial assay showed that PPy-Co3O4-AgNPs exhibited significant bactericidal activity against neuropathogenic E. coli K1 at only 8 μg/mL as compared to individual components of the nanocomposite, whereas a 70 % inhibition of A. castellanii viability was observed at 50 μg/mL. Moreover, PPy-Co3O4-AgNPs were found to have minimal cytotoxicity against human keratinocytes HaCaT cells in vitro even at higher concentration (50 μg/mL), and also reduced the microbes-mediated cytopathogenicity against host cells.

    CONCLUSION: These results demonstrate that PPy-Co3O4-AgNPs hold promise in the development of novel antimicrobial nanomaterials for biomedical applications.

    KEY POINTS: •Synthesis of polypyrrole-cobalt oxide-silver (PPy-Co3O4-AgNPs) nanocomposite. •Antimicrobial activity of nanocomposite. •PPy-Co3O4-AgNPs hold promise for biomedical applications.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  14. Ng HK, Goh KL, Chuah KH, Thalha AM, Kee BP, Por LY, et al.
    J Glob Antimicrob Resist, 2020 12;23:345-348.
    PMID: 33137535 DOI: 10.1016/j.jgar.2020.10.012
    OBJECTIVES: In Malaysia, the prevalence of Helicobacter pylori resistance to clarithromycin is increasing. This study aimed to determine mutations in the 23S rRNA domain V directly using bacterial DNA extracted from gastric biopsy specimens with a urease-positive result.

    METHODS: A 1085-bp fragment of 23S rRNA domain V from samples of 62 treatment-naïve patients with H. pylori infection was amplified by PCR with newly designed primers, followed by sequencing.

    RESULTS: Of the 62 cases, 42 patients were treated with clarithromycin-based triple therapy and 20 patients were treated with amoxicillin and proton pump inhibitor only; both therapies showed successful eradication rates of 70-73.8%. Sequencing analysis detected 37 point mutations (6 known and 31 novel) with prevalences ranging from 1.6% (1/62) to 72.6% (45/62). A2147G (aka A2143G) appears to be associated with a low eradication rate [40% (2/5) failure rate and 13.3% (6/45) treatment success rate], supporting its role as a clinically significant point mutation. T2186C (aka T2182C) was found in 71.1% (32/45) and 80% (4/5) of treatment success and failure cases, respectively, suggesting that the mutation is clinically insignificant. The eradication success rate in patients with the novel T2929C mutation was decreased three-fold (6.7%; 3/45) compared with the failure rate (20%; 1/5), suggesting that it may play an important role in clarithromycin resistance, thus warranting further study.

    CONCLUSION: This study identified multiple known and novel mutations in 23S rRNA domain V through direct sequencing. Molecular detection of clarithromycin resistance directly on biopsies offers an alternative to conventional susceptibility testing.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  15. Abdullah S, Jang SE, Kwak MK, Chong K
    J Microbiol, 2020 Dec;58(12):1054-1064.
    PMID: 33263896 DOI: 10.1007/s12275-020-0208-z
    Antiplasmodial nortriterpenes with 3,4-seco-27-norlanostane skeletons, almost entirely obtained from fruiting bodies, represent the main evidential source for bioactive secondary metabolites derived from a relatively unexplored phytopathogenic fungus, Ganoderma boninense. Currently lacking is convincing evidence for antimicrobial secondary metabolites in this pathogen, excluding that obtained from commonly observed phytochemicals in the plants. Herein, we aimed to demonstrate an efficient analytical approach for the production of antibacterial secondary metabolites using the mycelial extract of G. boninense. Three experimental cultures were prepared from fruiting bodies (GBFB), mycelium cultured on potato dextrose agar (PDA) media (GBMA), and liquid broth (GBMB). Through solvent extraction, culture type-dependent phytochemical distributions were diversely exhibited. Water-extracted GBMB produced the highest yield (31.21 ± 0.61%, p < 0.05), but both GBFB and GBMA elicited remarkably higher yields than GBMB when polar-organic solvent extraction was employed. Greater quantities of phytochemicals were also obtained from GBFB and GBMA, in sharp contrast to those gleaned from GBMB. However, the highest antibacterial activity was observed in chloroform-extracted GBMA against all tested bacteria. From liquid-liquid extractions (LLE), it was seen that mycelia extraction with combined chloroform-methanol-water at a ratio of 1:1:1 was superior at detecting antibacterial activities with the most significant quantities of antibacterial compounds. The data demonstrate a novel means of assessing antibacterial compounds with mycelia by LLE which avoids the shortcomings of standardized methodologies. Additionally, the antibacterial extract from the mycelia demonstrate that previously unknown bioactive secondary metabolites of the less studied subsets of Ganoderma may serve as active and potent antimicrobial compounds.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  16. Ng HF, Tan JL, Zin T, Yap SF, Ngeow YF
    J Med Microbiol, 2018 Dec;67(12):1676-1681.
    PMID: 30351265 DOI: 10.1099/jmm.0.000857
    In this study, we characterized 7C, a spontaneous mutant selected from tigecycline-susceptible Mycobacterium abscessus ATCC 19977. Whole-genome sequencing (WGS) was used to identify possible resistance determinants in this mutant. Compared to the wild-type, 7C demonstrated resistance to tigecycline as well as cross-resistance to imipenem, and had a slightly retarded growth rate. WGS and subsequent biological verifications showed that these phenotypes were caused by a point mutation in MAB_3542c, which encodes an RshA-like protein. In Mycobacterium tuberculosis, RshA is an anti-sigma factor that negatively regulates the heat/oxidative stress response mechanisms. The MAB_3542c mutation may represent a novel determinant of tigecycline resistance. We hypothesize that this mutation may dysregulate the stress-response pathways which have been shown to be linked to antibiotic resistance in previous studies.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  17. Ahmad N, Nawi S, Rajasekaran G, Maning N, Aziz MN, Husin A, et al.
    J Med Microbiol, 2010 Dec;59(Pt 12):1530-1532.
    PMID: 20724515 DOI: 10.1099/jmm.0.022079-0
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  18. Nami Y, Abdullah N, Haghshenas B, Radiah D, Rosli R, Khosroushahi AY
    J Med Microbiol, 2014 Aug;63(Pt 8):1044-1051.
    PMID: 24913559 DOI: 10.1099/jmm.0.074161-0
    Forty-five lactic acid bacteria (LAB) were isolated from the vaginal specimens of healthy fertile women, and the identities of the bacteria were confirmed by sequencing of their 16S rDNA genes. Among these bacteria, only four isolates were able to resist and survive in low pH, bile salts and simulated in vitro digestion conditions. Lactococcus lactis 2HL, Enterococcus durans 6HL, Lactobacillus acidophilus 36YL and Lactobacillus plantarum 5BL showed the best resistance to these conditions. These strains were evaluated further to assess their ability to adhere to human intestinal Caco-2 cells. Lactococcus lactis 2HL and E. durans 6HL were the most adherent strains. In vitro tests under neutralized pH proved the antimicrobial activity of both strains. Results revealed that the growth of Escherichia coli O26, Staphylococcus aureus and Shigella flexneri was suppressed by both LAB strains. The antibiotic susceptibility tests showed that these strains were sensitive to all nine antibiotics: vancomycin, tetracycline, ampicillin, penicillin, gentamicin, erythromycin, clindamycin, sulfamethoxazole and chloramphenicol. These data suggest that E. durans 6HL and Lactococcus lactis 2HL could be examined further for their useful properties and could be developed as new probiotics.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  19. Morrow CJ, Kreizinger Z, Achari RR, Bekő K, Yvon C, Gyuranecz M
    Vet Microbiol, 2020 Nov;250:108840.
    PMID: 33068825 DOI: 10.1016/j.vetmic.2020.108840
    Mycoplasma synoviae (n = 26) and M. gallisepticum (n = 11) isolates were gained from 164 clinical samples collected from China, India, Indonesia, Malaysia, Philippines, Republic of Korea and Thailand. Most isolates were from commercial chicken production systems. A method of filtering (0.45 μm) samples immediately after collection was convenient allowing over a week for transit to the laboratory. Minimum inhibitory concentrations (MICs) were characterized by a broth microdilution method to enrofloxacin, difloxacin, oxytetracycline, chlortetracycline, doxycycline, tylosin, tilmicosin, tylvalosin, tiamulin, florfenicol, lincomycin, spectinomycin and lincomycin and spectinomycin combination (1:2). Increased MICs to various antimicrobials were seen in different isolates but appeared largely unrelated to the antimicrobial treatment histories. Overall, the results were similar to other MIC surveys around the world. Generally, low MICs to tetracyclines, tiamulin and tylvalosin were observed. Increased tilmicosin MICs were observed in both M. synoviae and M. gallisepticum isolates (≥64 μg/ml MIC90 values) and this was seen in all isolates with high tylosin MICs. Increases in lincomycin MICs were mostly associated with increases in tilmicosin MICs. The results also suggested that antimicrobial use after mycoplasma vaccination may interfere with vaccine strain persistence and efficacy (field strains were more commonly observed in flocks that had treatments after vaccination) and this area warrants more investigation. The study shows that isolation and MIC determination can be done from remote locations and suggests that this may provide information that will allow more effective use of antimicrobials or other methods of control of avian mycoplasma in chickens (e.g. live vaccines) and therefore more responsible use of antimicrobials from a one health perspective.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  20. Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Heesom KJ, Jiménez-Castellanos JC, Zhang J, et al.
    PMID: 29263066 DOI: 10.1128/AAC.01814-17
    Fluoroquinolone resistance in Gram-negative bacteria is multifactorial, involving target site mutations, reductions in fluoroquinolone entry due to reduced porin production, increased fluoroquinolone efflux, enzymes that modify fluoroquinolones, and Qnr, a DNA mimic that protects the drug target from fluoroquinolone binding. Here we report a comprehensive analysis, using transformation and in vitro mutant selection, of the relative importance of each of these mechanisms for fluoroquinolone nonsusceptibility using Klebsiella pneumoniae as a model system. Our improved biological understanding was then used to generate 47 rules that can predict fluoroquinolone susceptibility in K. pneumoniae clinical isolates. Key to the success of this predictive process was the use of liquid chromatography-tandem mass spectrometry to measure the abundance of proteins in extracts of cultured bacteria, identifying which sequence variants seen in the whole-genome sequence data were functionally important in the context of fluoroquinolone susceptibility.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links