Depression is an incapacitating neuropsychiatric disorder. The serotonergic system in the brain plays an important role in the pathophysiology of depression. However, due to delayed and/or poor performance of selective serotonin reuptake inhibitors in treating depressive symptoms, the role of the serotonergic system in depression has been recently questioned further. Evidence from recent studies suggests that increased inflammation and oxidative stress may play significant roles in the pathophysiology of depression. The consequences of these factors can lead to the neuroprogression of depression, involving neurodegeneration, astrocytic apoptosis, reduced neurogenesis, reduced plasticity (neuronal and synaptic), and enhanced immunoreactivity. Specifically, increased proinflammatory cytokine levels have been shown to activate the kynurenine pathway, which causes increased production of quinolinic acid (QA, an N-Methyl-D-aspartate agonist) and decreases the synthesis of serotonin. QA exerts many deleterious effects on the brain via mechanisms including N-methyl-D-aspartate excitotoxicity, increased oxidative stress, astrocyte degeneration, and neuronal apoptosis. QA may also act directly as a pro-oxidant. Additionally, the nuclear translocation of antioxidant defense factors, such as nuclear factor (erythroid-derived 2)-like 2 (Nrf2), is downregulated in depression. Hence, in the present review, we discuss the role of QA in increasing oxidative stress in depression by modulating the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 and thus affecting the synthesis of antioxidant enzymes.
Excessive alcohol consumption is the cause of several diseases and thus is of a major concern for society. Worldwide alcohol consumption has increased by many folds over the past decades. This urgently calls for intervention and relapse counteract measures. Modern pharmacological solutions induce complete alcohol self-restraint and prevent relapse, but they have many side effects. Natural products are most promising as they cause fewer adverse effects. Here we discuss in detail the medicinal plants used in various traditional/folklore medicine systems for targeting alcohol abuse. We also comprehensively describe preclinical and clinical studies done on some of these plants along with the possible mechanisms of action.
Phyllanthus emblica Linn, a prominent member of the euphorbiaceae family, exhibits extensive distribution across a multitude of tropical and subtropical nations. Referred to as "Balakka" in Indonesia, this plant assumes various names across regions, such as "kimalaka," "balakka," "metengo," "malaka," and "kemloko" in North Sumatra, Ternate, Sundanese, and Java respectively. Phyllanthus emblica thrives in tropical locales like Indonesia, Malaysia, and Thailand, while also making its presence felt in subtropical regions like India, China, Uzbekistan, and Sri Lanka. The fruits of Balakka are enriched with bioactive constituents recognized for their wide-ranging benefits, including antioxidant, anti-aging, anti-cholesterol, anti-diabetic, immunomodulatory, antipyretic, analgesic, anti-inflammatory, chemoprotective, hepatoprotective, cardioprotective, antimutagenic, and antimicrobial properties. Comprising a spectrum of phenolic compounds (such as tannins, phenolic acids, and flavonoids), alkaloids, phytosterols, terpenoids, organic acids, amino acids, and vitamins, the bioactive components of Malacca fruit offer a diverse array of health-promoting attributes. In light of these insights, this review aims to comprehensively examine the pharmacological activities associated with P. emblica and delve into the intricate composition of its phytochemical constituents.
Background: The biologic disease-modifying antirheumatic drugs (bDMARDs) are currently incorporated as part of the pharmacotherapy management of inflammatory arthritis (IA). Adherence to bDMARDs is crucial to ensure treatment success in IA. However, most of the recent studies evaluated adherence level in patients using subcutaneous injections of bDMARDs utilized the indirect methods adapted from adherence assessment for oral medication. Aim: This study aimed to develop a questionnaire to assess adherence to the self-injectable subcutaneous bDMARDs. Methods: The development of the Subcutaneous bDMARDs Adherence Score (SCADS) involved evaluation of content validity. Literature reviews provide the basis for domain identification and item formation. Four experts evaluated the instrument by using a four-point ordinal scale with a rubric scoring on relevance, importance, and clarity of each item in measuring the overarching construct. The item-level content validity index (I-CVI) and the scale-level content validity index (S-CVI) were calculated. The factor structure and internal consistency reliability of SCADS were estimated using principal component analysis (PCA) and Cronbach's alpha, respectively. Results: Both S-CVI/UA (universal agreement) and the average item-level content validity index (S-CVI/Ave) (average) for the entire instrument showed excellent criteria with a value of >0.90. Cronbach's alpha coefficient value for SCADS was 0.707 indicating good internal consistency. All items showed corrected item-total correlation coefficients above 0.244. Questionnaire items with a factor loading of 0.30 or above were considered in the final factor solution. The factor analysis resulted in 3-factor solutions, which corresponded to 66.62% of the total variance. Conclusion: The SCADS is a consistent and reliable instrument for evaluating adherence among IA patients using the subcutaneous bDMARDs. It is simple to use, yet comprehensive but still requiring further clinical and international validation.
Aim: Due to their minimal side effects, the anti-cancer properties of the polyherbal formulation are being investigated. However, due to their low absorption potential, the administration of polyherbal formulations is restricted. Loading the polyherbal formulation into gold nanoparticles enhances the bioavailability of the polyherbal formulation (PHF) accompanied by reducing the concentration of doxorubicin (dox). Ferroptosis is one of the novel pathways that specifically target cancer stem cells due to high ferritin levels. Hence, in the present study, we conjugated polyherbal formulation with gold nanoparticles and studied its effect on inducing ferroptosis in drug-resistant breast cancer cell lines. Materials and methods: PHF and dox conjugated to gold nanoparticles were characterized using FTIR, UV-Vis spectrophotometer, DLS, particle size analyzer, and XRD. The drug entrapment and efficiency studies were performed to assess the biodegradable potential of the synthesized gold nanoparticles. Paclitaxel-resistant breast cancer stem cells were generated, and an MTT assay was performed to evaluate the cytotoxicity potential of AuNP-PHF and AuNP-dox. Scratch assay and clonogenic assay were performed to assess the migration and proliferation of the cells after treatment with chosen drug combinations. The ability of PHF and dox conjugated to gold nanoparticles to induce ferritinophagy was evaluated by RT-PCR. Finally, image analysis was performed to check apoptosis and cellular ROS using inverted fluorescent microscope. The ability to induce cell cycle arrest was assessed by cell cycle analysis using flow cytometer. Results and conclusion: PHF and dox conjugated to gold nanoparticles showed high stability and showed to induce ferritin degradation in drug resistant breast cancer stem cells through ferritin degradation. AuNP-PHF in combination with low dose of AuNP-Dox nanoconjugate could be used as an effective cancer therapeutic agent, by targeting the autophagy necroptosis axis.
Objective: The field of targeting cellular senescence with drug candidates to address age-related comorbidities has witnessed a notable surge of interest and research and development. This study aimed to gather valuable insights from pharmaceutical experts and healthcare practitioners regarding the potential and challenges of translating senolytic drugs for treatment of vascular aging-related disorders. Methods: This study employed a qualitative approach by conducting in-depth interviews with healthcare practitioners and pharmaceutical experts. Participants were selected through purposeful sampling. Thematic analysis was used to identify themes from the interview transcripts. Results: A total of six individuals were interviewed, with three being pharmaceutical experts and the remaining three healthcare practitioners. The significant global burden of cardiovascular diseases presents a potentially large market size that offer an opportunity for the development and marketability of novel senolytic drugs. The pharmaceutical sector demonstrates a positive inclination towards the commercialization of new senolytic drugs targeting vascular aging-related disorders. However potential important concerns have been raised, and these include increasing specificity toward senescent cells to prevent off-site targeting, thus ensuring the safety and efficacy of these drugs. In addition, novel senolytic therapy for vascular aging-related disorders may encounter competition from existing drugs that treat or manage risk factors of cardiovascular diseases. Healthcare practitioners are also in favor of recommending the novel senolytic drugs for vascular aging-related disorders but cautioned that its high cost may hinder its acceptance among patients. Besides sharing the same outcome-related concerns as with the pharmaceutical experts, healthcare practitioners anticipated a lack of awareness among the general public regarding the concept of targeting cellular senescence to delay vascular aging-related disorders, and this knowledge gap extends to healthcare practitioner themselves as well. Conclusion: Senolytic therapy for vascular aging-related disorders holds great promise, provided that crucial concerns surrounding its outcomes and commercial hurdles are effectively addressed.
Polyalthia longifolia var. angustifolia Thw. (Annonaceae), is a famous traditional medicinal plant in Asia. Ample data specifies that the medicinal plant P. longifolia has anticancer activity; however, the detailed mechanisms of action still need to be well studied. Recent studies have revealed the cytotoxicity potential of P. longifolia leaf against HeLa cells. Therefore, the current study was conducted to examine the regulation of miRNAs in HeLa cancer cells treated with the standardized P. longifolia methanolic leaf extract (PLME). The regulation of miRNAs in HeLa cancer cells treated with the standardized PLME extract was studied through Illumina, Hi-Seq. 2000 platform of Next-Generation Sequencing (NGS) and various in silico bioinformatics tools. The PLME treatment regulated a subset of miRNAs in HeLa cells. Interestingly, the PLME treatment against HeLa cancer cells identified 10 upregulated and 43 downregulated (p < 0.05) miRNAs associated with apoptosis induction. Gene ontology (GO) term analysis indicated that PLME induces cell death in HeLa cells by inducing the pro-apoptotic genes. Moreover, the downregulated oncomiRs modulated by PLME treatment in HeLa cells were identified, targeting apoptosis-related genes through gene ontology and pathway analysis. The LC-ESI-MS/MS analysis identified the presence of Vidarabine and Anandamide compounds that were previously reported to exhibit anticancer activity. The findings of this study obviously linked the cell cytotoxicity effect of PLME treatment against the HeLa cells with regulating various miRNAs expression related to apoptosis induction in the HeLa cells. PLME treatment induced apoptotic HeLa cell death mechanism by regulating multiple miRNAs. The identified miRNAs regulated by PLME may provide further insight into the mechanisms that play a critical role in cervical cancer, as well as novel ideas regarding gene therapeutic strategies.
The herbal products, sold worldwide as medicines or foods, are perceived as low risk because they are considered natural and thus safe. The quality of these products is ineffectively regulated and controlled. The growing evidence for their lack of authenticity is causing deep concern, but the scale of this phenomenon at the global, continental or national scale remains unknown. We analyzed data reporting the authenticity, as detected with DNA-based methods, of 5,957 commercial herbal products sold in 37 countries, distributed in all six inhabited continents. Our global survey shows that a substantial proportion (27%) of the herbal products commercialized in the global marketplace is adulterated when their content was tested against their labeled, claimed ingredient species. The adulterated herbal products are distributed across all continents and regions. The proportion of adulterated products varies significantly among continents, being highest in Australia (79%), South America (67%), lower in Europe (47%), North America (33%), Africa (27%) and the lowest in Asia (23%). The commercial HPs' authenticity among the 37 countries included in our global analysis ranges between 0 and 100% from the total number of product reported for each specific national marketplace. For 9 countries, more than 100 products were successfully DNA-based authenticated and reported. From these countries, the highest percentage of adulterated commercial HPs was reported for Brazil (68%), followed distantly by Taiwan (32%), India (31%), USA (29%), followed closely by Malaysia (24%), Japan (23%), South Korea (23%), Thailand (20%), and China (19%). Our results confirm the large-scale presence of adulterated herbal products throughout the global market. The adulterated herbal products contain undeclared contaminant, substitute, and filler species, or none of the labeled species, which all may be accidental or intentional, economically-motivated and fraudulent. Due to the ever-increasing analytical sensitivity of the high throughput DNA sequencing, increasingly used for the untargeted, simultaneous multi-taxa identification, the proportion of adulterated HPs detected on the global market is expected to increase. In the context of the increasing demand for HPs, the limited supply of raw materials derived from many plant species, some of which being already nationally or internationally protected and having various degrees of trade restrictions, adds up to the differences and discrepancies between national HPs' regulatory frameworks and further increases the risks of adulteration of many types of herbal products. The globally widespread adulteration is a serious threat to consumers' well-being and safety, in spite of herbal products' claimed or expected health benefits.
Obesity has been implicated as a risk factor for insulin resistance and cardiovascular diseases (CVDs). Although the association between obesity and CVD is a well-established phenomenon, the precise mechanisms remain incompletely understood. This has led to a relative paucity of therapeutic measures for the prevention and treatment of CVD and associated metabolic disorders. Recent studies have shed light on the pivotal role of prolonged endoplasmic reticulum stress (ERS)-initiated activation of the unfolded protein response (UPR), the ensuing chronic low-grade inflammation, and altered insulin signaling in promoting obesity-compromised cardiovascular system (CVS). In this aspect, potential ways of attenuating ERS-initiated UPR signaling seem a promising avenue for therapeutic interventions. We review intersecting role of obesity-induced ERS, chronic inflammation, insulin resistance, and oxidative stress in the discovery of targeted therapy. Moreover, this review highlights the current progress and strategies on therapeutics being explored in preclinical and clinical research to modulate ERS and UPR signaling.
Background: COVID-19 has already claimed a considerable number of lives worldwide. However, there are concerns with treatment recommendations given the extent of conflicting results with suggested treatments and misinformation, some of which has resulted in increased prices and shortages alongside increasing use and prices of personal protective equipment (PPE). This is a concern in countries such as India where there have been high patient co-payments and an appreciable number of families going into poverty when members become ill. However, balanced against pricing controls. Community pharmacists play a significant role in disease management in India, and this will remain. Consequently, there is a need to review prices and availability of pertinent medicines during the early stages of the COVID-19 pandemic in India to provide future direction. Objective: Assess current utilisation and price changes as well as shortages of pertinent medicines and equipment during the early stages of the pandemic. Our Approach: Multiple approach involving a review of treatments and ongoing activities across India to reduce the spread of the virus alongside questioning pharmacies in selected cities from early March to end May 2020. Our Activities: 111 pharmacies took part, giving a response rate of 80%. Encouragingly, no change in utilisation of antimalarial medicines in 45% of pharmacies despite endorsements and for antibiotics in 57.7% of pharmacies, helped by increasing need for a prescription for dispensing. In addition, increased purchasing of PPE (over 98%). No price increases were seen for antimalarials and antibiotics in 83.8 and 91.9% of pharmacies respectively although shortages were seen for antimalarials in 70.3% of pharmacies, lower for antibiotics (9.9% of pharmacies). However, price increases were typically seen for PPE (over 90% of stores) as well as for analgesics (over 50% of pharmacies). Shortages were also seen for PPE (88.3%). Conclusion: The pandemic has impacted on utilisation and prices of pertinent medicines and PPE in India but moderated by increased scrutiny. Key stakeholder groups can play a role with enhancing evidenced-based approaches and reducing inappropriate purchasing in the future.
The rapid outbreak of coronavirus disease 2019 (COVID-19) has demonstrated the need for development of new vaccine candidates and therapeutic drugs to fight against the underlying virus, severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Currently, no antiviral treatment is available to treat COVID-19 as treatment is mostly directed to only relieving the symptoms. Retrospectively, herbal medicinal plants have been used for thousands of years as a medicinal alternative including for the treatment of various viral illnesses. However, a comprehensive description using various medicinal plants in treating coronavirus infection has not to date been described adequately, especially their modes of action. Most other reports and reviews have also only focused on selected ethnobotanical herbs such as Traditional Chinese Medicine, yet more plants can be considered to enrich the source of the anti-viral compounds. In this review, we have screened and identified potential herbal medicinal plants as anti-coronavirus medication across major literature databases without being limited to any regions or ethnobotanic criteria. As such we have successfully gathered experimentally validated in vivo, in vitro, or in silico findings of more than 30 plants in which these plant extracts or their related compounds, such as those of Artemisia annua L., Houttuynia cordata Thunb., and Sambucus formosana Nakai, are described through their respective modes of action against specific mechanisms or pathways during the viral infection. This includes inhibition of viral attachment and penetration, inhibition of viral RNA and protein synthesis, inhibition of viral key proteins such as 3-chymotrypsin-like cysteine protease (3CLpro) and papain-like protease 2 (PLpro), as well as other mechanisms including inhibition of the viral release and enhanced host immunity. We hope this compilation will help researchers and clinicians to identify the source of appropriate anti-viral drugs from plants in combating COVID-19 and, ultimately, save millions of affected human lives.
Though cancer therapeutics can successfully eradicate cancerous cells, the effectiveness of these medications is mostly restricted to several deleterious side effects. Therefore, to alleviate these side effects, antioxidant supplementation is often warranted, reducing reactive species levels and mitigating persistent oxidative damage. Thus, it can impede the growth of cancer cells while protecting the normal cells simultaneously. Moreover, antioxidant supplementation alone or in combination with chemotherapeutics hinders further tumor development, prevents chemoresistance by improving the response to chemotherapy drugs, and enhances cancer patients' quality of life by alleviating side effects. Preclinical and clinical studies have been revealed the efficacy of using phytochemical and dietary antioxidants from different sources in treating chemo and radiation therapy-induced toxicities and enhancing treatment effectiveness. In this context, algae, both micro and macro, can be considered as alternative natural sources of antioxidants. Algae possess antioxidants from diverse groups, which can be exploited in the pharmaceutical industry. Despite having nutritional benefits, investigation and utilization of algal antioxidants are still in their infancy. This review article summarizes the prospective anticancer effect of twenty-three antioxidants from microalgae and their potential mechanism of action in cancer cells, as well as usage in cancer therapy. In addition, antioxidants from seaweeds, especially from edible species, are outlined, as well.
Nigella is a small genus of the family Ranunculaceae, which includes some popular species due to their culinary and medicinal properties, especially in Eastern Europe, Middle East, Western, and Central Asia. Therefore, this review covers the traditional uses and phytochemical composition of Nigella and, in particular, Nigella sativa. The pharmacological studies reported in vitro, in vivo, and in humans have also been reviewed. One of the main strength of the use of Nigella is that the seeds are rich in the omega-6 fatty acid linoleic acid and provide an extra-source of dietary phytochemicals, including the bioactive thymoquinone, and characteristics saponins, alkaloids, and flavonoids. Among Nigella species, N. sativa L. is the most studied plant from the genus. Due to the phytochemical composition and pharmacological properties, the seed and seed oil from this plant can be considered as good candidates to formulate functional ingredients on the basis of folklore and scientific knowledge. Nonetheless, the main limations are that more studies, especially, clinical trials are required to standardize the results, e.g. to establish active molecules, dosage, chemical profile, long-term effects and impact of cooking/incorporation into foods.
SARS-CoV-2 is the latest worldwide pandemic declared by the World Health Organization and there is no established anti-COVID-19 drug to combat this notorious situation except some recently approved vaccines. By affecting the global public health sector, this viral infection has created a disastrous situation associated with high morbidity and mortality rates along with remarkable cases of hospitalization because of its tendency to be high infective. These challenges forced researchers and leading pharmaceutical companies to find and develop cures for this novel strain of coronavirus. Besides, plants have a proven history of being notable wellsprings of potential drugs, including antiviral, antibacterial, and anticancer therapies. As a continuation of this approach, plant-based preparations and bioactive metabolites along with a notable number of traditional medicines, bioactive phytochemicals, traditional Chinese medicines, nutraceuticals, Ayurvedic preparations, and other plant-based products are being explored as possible therapeutics against COVID-19. Moreover, the unavailability of effective medicines against COVID-19 has driven researchers and members of the pharmaceutical, herbal, and related industries to conduct extensive investigations of plant-based products, especially those that have already shown antiviral properties. Even the recent invention of several vaccines has not eliminated doubts about safety and efficacy. As a consequence, many limited, unregulated clinical trials involving conventional mono- and poly-herbal therapies are being conducted in various areas of the world. Of the many clinical trials to establish such agents as credentialed sources of anti-COVID-19 medications, only a few have reached the landmark of completion. In this review, we have highlighted and focused on plant-based anti-COVID-19 clinical trials found in several scientific and authenticated databases. The aim is to allow researchers and innovators to identify promising and prospective anti-COVID-19 agents in clinical trials (either completed or recruiting) to establish them as novel therapies to address this unwanted pandemic.
Obesity affects more than 10% of the adult population globally. Despite the introduction of diverse medications aimed at combating fat accumulation and obesity, a significant number of these pharmaceutical interventions are linked to substantial occurrences of severe adverse events, occasionally leading to their withdrawal from the market. Natural products serve as attractive sources for anti-obesity agents as many of them can alter the host metabolic processes and maintain glucose homeostasis via metabolic and thermogenic stimulation, appetite regulation, pancreatic lipase and amylase inhibition, insulin sensitivity enhancing, adipogenesis inhibition and adipocyte apoptosis induction. In this review, we shed light on the biological processes that control energy balance and thermogenesis as well as metabolic pathways in white adipose tissue browning, we also highlight the anti-obesity potential of natural products with their mechanism of action. Based on previous findings, the crucial proteins and molecular pathways involved in adipose tissue browning and lipolysis induction are uncoupling protein-1, PR domain containing 16, and peroxisome proliferator-activated receptor-γ in addition to Sirtuin-1 and AMP-activated protein kinase pathway. Given that some phytochemicals can also lower proinflammatory substances like TNF-α, IL-6, and IL-1 secreted from adipose tissue and change the production of adipokines like leptin and adiponectin, which are important regulators of body weight, natural products represent a treasure trove for anti-obesity agents. In conclusion, conducting comprehensive research on natural products holds the potential to accelerate the development of an improved obesity management strategy characterized by heightened efficacy and reduced incidence of side effects.
Objective: The aim of this study was to determine the cost-effectiveness of adding empagliflozin to the standard of care versus SoC alone for the treatment of patients with heart failure (HF) with reduced ejection fraction (HFrEF) from the perspective of the Ministry of Health of Malaysia. Methods: A cohort-based transition-state model, with health states defined as Kansas City Cardiomyopathy Questionnaire Clinical Summary Score (KCCQ-CSS) quartiles and death, was used to determine the lifetime direct medical costs and quality-adjusted life years (QALYs) for both treatment groups. The risks of all-cause death, cardiovascular death, and health state utilities were estimated from the EMPEROR-Reduced trial. The incremental cost-effectiveness ratio (ICER) was assessed against the cost-effectiveness threshold (CET) as defined by the country's gross domestic product per capita (RM 47,439 per QALY) to determine cost-effectiveness. Sensitivity analyses were conducted to assess the key model parameters' uncertainty in respect to the incremental cost-effectiveness ratio. A scenario analysis was performed using health states as defined by the New York Heart Association classes. Results: Compared to SoC alone, empagliflozin + SoC for the treatment of HFrEF was more expensive (RM 25,333 vs. RM 21,675) but gained more health utilities (3.64 vs. 3.46), resulting in an ICER of RM 20,400 per QALY in the KCCQ-CSS model. A NYHA-based scenario analysis generated an ICER of RM 36,682 per QALY. A deterministic sensitivity analysis confirmed the robustness of the model in identifying the empagliflozin cost as the main driver of cost-effectiveness. The ICER was reduced to RM 6,621 when the government medication purchasing prices were used. A probabilistic sensitivity analysis with a CET of 1xGDP per capita reached 72.9% probability for empagliflozin + SoC against SoC being cost-effective. Conclusion: Empagliflozin + SoC compared to SoC alone for the treatment of HFrEF patients was cost-effective from the perspective of the MoH of Malaysia.
Being the first or second cause of death worldwide, cancer represents the most significant clinical, social, and financial burden of any human illness. Despite recent progresses in cancer diagnosis and management, traditional cancer chemotherapies have shown several adverse side effects and loss of potency due to increased resistance. As a result, one of the current approaches is on with the search of bioactive anticancer compounds from natural sources. Neopeltolide is a marine-derived macrolide isolated from deep-water sponges collected off Jamaica's north coast. Its mechanism of action is still under research but represents a potentially promising novel drug for cancer therapy. In this review, we first illustrate the general structural characterization of neopeltolide, the semi-synthetic derivatives, and current medical applications. In addition, we reviewed its anticancer properties, primarily based on in vitro studies, and the possible clinical trials. Finally, we summarize the recent progress in the mechanism of antitumor action of neopeltolide. According to the information presented, we identified two principal challenges in the research, i) the effective dose which acts neopeltolide as an anticancer compound, and ii) to unequivocally establish the mechanism of action by which the compound exerts its antiproliferative effect.
This study assessed the toxicity of lutein-rich purple sweet potato leaf (PSPL) extract in male Sprague-Dawley rats. Methods and study design: A total of 54 adult male Sprague-Dawley rats were used. For the acute toxicity study, three rats in the acute control group were fed 2,000 mg/kg of PSPL for 14 days. The subacute toxicity study included six rats each in four groups administered 50, 250, 500, or 1,000 mg/kg for 28 days and observed for further 14 days without treatment in the subacute control and subacute satellite groups. Changes in body weight; blood biochemistry; hematological parameters; relative organ weight; and histological sections of the heart, kidney, liver, pancreas, aorta, and retina were observed for signs of toxicity. Results: The gradual increase in weekly body weight, normal level full blood count, normal liver and kidney profile, relative organ weight, and histological sections of all stained organ tissue in the treated group compared with the acute, subacute, and satellite control groups demonstrated the absence of signs of toxicity. Conclusion: Lutein-rich PSPL extract shows no signs of toxicity up to 2,000 mg/kg/day.