Displaying publications 181 - 200 of 723 in total

Abstract:
Sort:
  1. Safdar MH, Hasan H, Afzal S, Hussain Z
    Mini Rev Med Chem, 2018;18(12):1047-1063.
    PMID: 29173165 DOI: 10.2174/1389557517666171123212039
    The immune system is an intricate and coordinated nexus serving as a natural defense to preclude internal and external pathogenic insults. The deregulation in the natural balance of immunological functions as a consequence of either over expression or under expression of immune cells tends to cause disruption of homeostasis in the body and may lead to development of numerous immune system disorders. Chalcone moieties (1,3-diphenyl-2-propen-1-one) have been well-documented as ideal lead compounds or precursors to design a wide range of pharmacologically active agents to down-regulate various immune disorders. Owing to their unique structural and molecular framework, these α, β-unsaturated carbonyl-based moieties have also gained remarkable recognition due to their other multifarious pharmacological properties including antifungal, anti-inflammatory, anti-malarial, antibacterial, anti-tuberculosis, and anticancer potential. Though a great number of methodologies are currently being employed for their synthesis, this review mainly focuses on the natural and synthetic chalcone derivatives that are exclusively synthesized via Claisen-Schmidt condensation reaction and their immunomodulatory prospects. We have critically reviewed the literature and provided convincing evidence for the promising efficacy of chalcone derivatives to modulate functioning of various innate and adaptive immune players including granulocytes, mast cells, monocytes, macrophages, platelets, dendritic cells, natural killer cells, and T-lymphocytes.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis; Anti-Inflammatory Agents, Non-Steroidal/pharmacology; Anti-Inflammatory Agents, Non-Steroidal/chemistry
  2. Rahim H, Sadiq A, Khan S, Khan MA, Shah SMH, Hussain Z, et al.
    Drug Des Devel Ther, 2017;11:2443-2452.
    PMID: 28860715 DOI: 10.2147/DDDT.S140626
    This study was aimed to enhance the dissolution rate, oral bioavailability and analgesic potential of the aceclofenac (AC) in the form of nanosuspension using cost-effective simple precipitation-ultrasonication approach. The nanocrystals were produced using the optimum conditions investigated for AC. The minimum particle size (PS) and polydispersity index was found to be 112±2.01 nm and 0.165, respectively, using hydroxypropyl methylcellulose (1%, w/w), polyvinylpyrrolidone K30 (1%, w/w) and sodium lauryl sulfate (0.12%, w/w). The characterization of AC was performed using zeta sizer, scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction and differential scanning calorimetry. The saturation solubility of the AC nanocrystals was substantially increased 2.6- and 4.5-fold compared to its unprocessed active pharmaceutical ingredient in stabilizer solution and unprocessed drug. Similarly, the dissolution rate of the AC nanocrystals was substantially enhanced compared to its other counterpart. The results showed that >88% of AC nanocrystals were dissolved in first 10 min compared to unprocessed AC (8.38%), microsuspension (66.65%) and its marketed tablets (17.65%). The in vivo studies of the produced stabilized nanosuspension demonstrated that the Cmax were 4.98- and 2.80-fold while area under curve from time of administration to 24 h (AUC0→24 h) were found 3.88- and 2.10-fold greater when compared with unprocessed drug and its marketed formulation, respectively. The improved antinociceptive activity of AC nanocrystals was shown at much lower doses as compared to unprocessed drug, which is purely because of nanonization which may be attributed to improved solubility and dissolution rate of AC, ultimately resulting in its faster rate of absorption.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage*; Anti-Inflammatory Agents, Non-Steroidal/pharmacology; Anti-Inflammatory Agents, Non-Steroidal/chemistry
  3. Amirullah NA, Zainal Abidin N, Abdullah N
    Food Res Int, 2018 03;105:517-536.
    PMID: 29433243 DOI: 10.1016/j.foodres.2017.11.023
    Atherosclerosis is a complex pathology that involves several factors in its development, like oxidative stress, inflammation, hyperlipidemia, platelet aggregation and thrombus formation. Several drugs and therapeutic approaches have been developed to handle these aspects of atherosclerosis. However, some of these treatments can be costly and have undesirable side effects. Many constituents of mushrooms have been shown to have potential anti-atherosclerotic effects in several in vitro and in vivo studies. Recently, the possible mechanisms in which they exert these effects have also been elucidated. In this review, some of the research focusing on mushrooms and their potential anti-atherosclerotic effects are examined. Many mushroom species exhibited anti-oxidative, anti-inflammatory and hypolipidemic effects that can potentially attenuate the progression of atherosclerosis, either through their isolated compounds or use of crude extracts. More studies are focused on the effect that mushrooms have on gene expressions that are involved in oxidative stress, inflammation, and hyperlipidemia. These studies could provide us with a better understanding on the mechanisms in which the consumption of mushrooms could exert their possible anti-atherosclerotic effects. Further research needs to be done to uncover other possible mechanisms that are affected by mushroom use.
    Matched MeSH terms: Anti-Inflammatory Agents
  4. Eid AM, El-Enshasy HA, Aziz R, Elmarzugi NA
    Int J Nanomedicine, 2014;9:4685-95.
    PMID: 25336948 DOI: 10.2147/IJN.S66180
    There is an increasing trend among pharmaceutical industries to use natural bioactive materials as medicinal agents and to use new technologies such as self-nanoemulsifying systems. The solubility and bioavailability of poorly soluble drugs can be enhanced by self-nanoemulsifying systems. Swietenia oil is frequently used because of its antimicrobial, antimutagenic, and anticancer bioactive medical properties. This study was conducted to develop self-nanoemulsifying systems for Swietenia oil that will enhance the anti-inflammatory activity of the oil. The self-emulsifying systems developed for Swietenia oil in this study were constructed using ternary phase diagrams and contained the nonionic surfactants Labrasol(®), Tween 20, Capmul(®), and Labrafil(®). The effect of these surfactants on the formulation was examined. The mean droplet size of Swietenia oil as well as their distribution, appearance, viscosity, and spreading times were studied to find the optimum formula, which contained droplets that were less than 200 nm. The next step was to test the anti-inflammatory properties of the optimum formula using a carrageenan-induced rat paw edema test. The results from this test were compared to the oil solution. Different oil/surfactants mixtures had various emulsification properties that were related to the size of their droplets. Tween 20 is a good surfactant to use in self-emulsifying systems because it produces droplets of nano-size. Mixtures of Capmul/Labrasol at a ratio of 2:1 and Labrafil/Tween 20 at a ratio of 1:2 were able to produce self-nanoemulsifying formulations containing Swietenia oil concentrations that ranged from 20%-50%. Nanoemulsion occurred when the size of the droplets fell below 200 nm with low size distribution (<0.3) after being gently mixed with water. It was found that the hydrophilic/lipophilic balance value affected the ternary phase diagram behavior of Swietenia oil and surfactants. In addition, the anti-inflammatory properties of Swietenia oil were greater in the self-nanoemulsifying systems than in the oil solution.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology; Anti-Inflammatory Agents/therapeutic use*; Anti-Inflammatory Agents/chemistry*
  5. Othman AR, Abdullah N, Ahmad S, Ismail IS, Zakaria MP
    PMID: 25652309 DOI: 10.1186/s12906-015-0528-4
    BACKGROUND: The Jatropha curcas plant or locally known as "Pokok Jarak" has been widely used in traditional medical applications. This plant is used to treat various conditions such as arthritis, gout, jaundice, wound and inflammation. However, the nature of compounds involved has not been well documented. Hence, this study was conducted to investigate the anti-inflammatory activity of different parts of J. curcas plant and to identify the active compounds involved.

    METHODS: In this study, methanol (80%) extraction of four different parts (leaves, fruits, stem and root) of J. curcas plant was carried out. Phenolic content of each part was determined by using Folin-Ciocalteau reagent. Gallic acid was used as the phenol standard. Each plant part was screened for anti-inflammatory activity using cultured macrophage RAW 264.7 cells. The active plant part was then partitioned with hexane, chloroform, ethyl acetate and water. Each partition was again screened for anti-inflammatory activity. The active partition was then fractionated using an open column chromatography system. Single spots isolated from column chromatography were assayed for anti-inflammatory and cytotoxicity activities. Spots that showed activity were subjected to gas chromatography mass spectrophotometry (GC-MS) analysis for identification of active metabolites.

    RESULTS: The hexane partition from root extract showed the highest anti-inflammatory activity. However, it also showed high cytotoxicity towards RAW 264.7 cells at 1 mg/mL. Fractionation process using column chromatography showed five spots. Two spots labeled as H-4 and H-5 possessed anti-inflammatory activity, without cytotoxicity activity. Analysis of both spots by GC-MS showed the presence of hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid.

    CONCLUSION: This finding suggests that hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid could be responsible for the anti-inflammatory activity of the J. curcas root extract.

    Matched MeSH terms: Anti-Inflammatory Agents/analysis; Anti-Inflammatory Agents/pharmacology*; Anti-Inflammatory Agents/therapeutic use
  6. Ali NM, Mohd Yusof H, Yeap SK, Ho WY, Beh BK, Long K, et al.
    PMID: 25045389 DOI: 10.1155/2014/350507
    Evaluation of anti-inflammatory and antinociceptive activities of untreated mung bean (MB), germinated mung bean (GMB), and fermented mung bean (FMB) was performed on both in vitro (inhibition of inflammatory mediator, nitric oxide(NO)) and in vivo (inhibition of ear oedema and reduction of response to pain stimulus) studies. Results showed that both GMB and FMB aqueous extract exhibited potent anti-inflammatory and antinociceptive activities in a dose-dependent manner. In vitro results showed that GMB and FMB were potent inflammatory mediator (NO) inhibitors at both 2.5 and 5 mg/mL. Further in vivo studies showed that GMB and FMB aqueous extract at 1000 mg/kg can significantly reduce ear oedema in mice caused by arachidonic acid. Besides, both 200 mg/kg and 1000 mg/kg concentrations of GMB and FMB were found to exhibit potent antinociceptive effects towards hotplate induced pain. With these, it can be concluded that GMB and FMB aqueous extract exhibited potential anti-inflammatory and antinociceptive effects.
    Matched MeSH terms: Anti-Inflammatory Agents
  7. Kamaruzaman S, Sanagi MM, Endud S, Wan Ibrahim WA, Yahaya N
    PMID: 24140656 DOI: 10.1016/j.jchromb.2013.09.017
    Mesoporous silica material, MCM-41, was utilized for the first time as an adsorbent in solid phase membrane tip extraction (SPMTE) of non-steroidal anti-inflammatory drugs (NSAIDs) in urine prior to high performance liquid chromatography-ultraviolet (HPLC-UV) analysis. The prepared MCM-41 material was enclosed in a polypropylene membrane tip and used as an adsorbent in SPMTE. Four NSAIDs namely ketoprofen, diclofenac, mefenamic acid and naproxen were selected as model analytes. Several important parameters, such as conditioning solvent, sample pH, salting-out effect, sample volume, extraction time, desorption solvent and desorption time were optimized. Under the optimum extraction conditions, the MCM-41-SPMTE method showed good linearity in the range of 0.01-10μg/mL with excellent correlation coefficients (r=0.9977-0.9995), acceptable RSDs (0.4-9.4%, n=3), good limits of detection (5.7-10.6μg/L) and relative recoveries (81.4-108.1%). The developed method showed a good tolerance to biological sample matrices.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/isolation & purification; Anti-Inflammatory Agents, Non-Steroidal/urine*; Anti-Inflammatory Agents, Non-Steroidal/chemistry
  8. Sabry MM, Abdel-Rahman RF, Fayed HM, Taher AT, Ogaly HA, Albohy A, et al.
    J Ethnopharmacol, 2023 Oct 05;314:116631.
    PMID: 37172920 DOI: 10.1016/j.jep.2023.116631
    ETHNOPHARMACOLOGICAL RELEVANCE: Eucalyptus maculata Hook from the Myrtaceae family is a native Australian plant that is frequently cultivated in Egypt. Many Eucalyptus species, including E. maculata, were widely used by the Dharawal, the indigenous Australian people, for their anti-inflammatory properties.

    AIM OF THE STUDY: The purpose of this study was to determine the anti-inflammatory activity of the ethanol extract of E. maculata resin exudate, its methylene chloride and n-butanol fractions, as well as the isolated compounds.

    MATERIALS AND METHODS: the ethanol extract was partitioned by methylene chloride, and n-butanol saturated with water. The fractions were chromatographed to isolate pure compounds. In-vivo anti-inflammatory activity of the ethanol extract, the fractions at a dose of 200 mg/kg, and the isolated compounds (20 mg/kg) was estimated using carrageenan-induced rat paws edema method against indomethacin (20 mg/kg). The activity was supported by histopathological and biochemical parameters.

    RESULTS: Three isolated compounds were identified as aromadendrin (C1), 7-O-methyl aromadendrin (C2), and naringenin (C3). Our findings demonstrated that the tested fractions significantly reduced the paw edema starting from the 3rd to the 5th hour as compared to the positive control, compounds C2 and C3 showed the greatest significant reduction in paw edema. The ethanol extract, fractions, C2, and C3 demonstrated an anti-inflammatory potential through reducing the levels of TNF-α, IL-6, and PGE2, as well as COX-2 protein expression compared to the negative control. These results were supported by molecular docking, which revealed that the isolated compounds had high affinity to target COX-1 and COX-2 active sites with docking scores ranging from -7.3 to -9.6 kcal mol-1 when compared to ibubrofen (-7.8 and -7.4 kcal mol-1, respectively). Molecular dynamics simulations were also performed and confirmed the docking results.

    CONCLUSION: The results supported the traditional anti-inflammatory potency of E. maculata Hook, and the biochemical mechanisms underlying this activity were highlighted, opening up new paths for the development of potent herbal anti-inflammatory medicine. Finally, our findings revealed that E. maculata resin constituents could be considered as promising anti-inflammatory drug candidates.

    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology; Anti-Inflammatory Agents/therapeutic use; Anti-Inflammatory Agents/chemistry
  9. Hamid AA, Aminuddin A, Yunus MHM, Murthy JK, Hui CK, Ugusman A
    Rev Cardiovasc Med, 2020 Jun 30;21(2):275-287.
    PMID: 32706215 DOI: 10.31083/j.rcm.2020.02.50
    Inflammation and oxidative stress are involved in the pathogenesis of cardiovascular diseases such as atherosclerosis, hypertension and ischemic heart disease. Natural products play an important role as nutritional supplements with potential health benefits in cardiovascular diseases. Polygonum minus (PM) is an aromatic plant that is widely used as a flavoring agent in cooking and has been recognized as a plant with various medicinal properties including antioxidative and anti-inflammatory actions. Phytoconstituents found in PM such as phenolic and flavonoid compounds contribute to the plant's antioxidative and anti-inflammatory effects. We conducted this review to systematically identify articles related to the antioxidative and anti-inflammatory activities of PM. A computerized database search was conducted on Ovid MEDLINE, PubMed, Scopus, and ACS publication, from 1946 until May 2020, and the following keywords were used: 'Kesum OR Polygonum minus OR Persicaria minor' AND 'inflammat* OR oxida* OR antioxida*'. A total of 125 articles were obtained. Another eight additional articles were identified through Google Scholar and review articles. Altogether, 17 articles were used for data extraction, comprising 16 articles on antioxidant and one article on anti-inflammatory activity of PM. These studies consist of 14 in vitro studies, one in vivo animal study, one combined in vitro and in vivo study and one combined in vitro and ex vivo study. All the studies reported that PM exhibits antioxidative and anti-inflammatory activities which are most likely attributed to its high phenolic and flavonoid content.
    Matched MeSH terms: Anti-Inflammatory Agents/adverse effects; Anti-Inflammatory Agents/isolation & purification; Anti-Inflammatory Agents/therapeutic use*
  10. Rathnavelu V, Alitheen NB, Sohila S, Kanagesan S, Ramesh R
    Biomed Rep, 2016 Sep;5(3):283-288.
    PMID: 27602208
    Pineapple has been used as part of traditional folk medicine since ancient times and it continues to be present in various herbal preparations. Bromelain is a complex mixture of protease extracted from the fruit or stem of the pineapple plant. Although the complete molecular mechanism of action of bromelain has not been completely identified, bromelain gained universal acceptability as a phytotherapeutic agent due to its history of safe use and lack of side effects. Bromelain is widely administered for its well-recognized properties, such as its anti-inflammatory, antithrombotic and fibrinolytic affects, anticancer activity and immunomodulatory effects, in addition to being a wound healing and circulatory improvement agent. The current review describes the promising clinical applications and therapeutic properties of bromelain.
    Matched MeSH terms: Anti-Inflammatory Agents
  11. Kalantari K, Moniri M, Boroumand Moghaddam A, Abdul Rahim R, Bin Ariff A, Izadiyan Z, et al.
    Molecules, 2017 Sep 30;22(10).
    PMID: 28974019 DOI: 10.3390/molecules22101645
    Zerumbone (ZER) is a phytochemical isolated from the subtropical Zingiberaceae family and as a natural compound it has different biomedical properties such as antioxidant, anti-inflammatory anti-proliferative activity. ZER also has effects on angiogenesis and acts as an antitumor drug in the treatment of cancer, showing selective toxicity toward various cancer cell lines. Several techniques also have been established for extraction of ZER from the rhizomes of ginger. This review paper is an overview of recent research about different extraction methods and their efficiencies, in vivo and vitro investigations of ZER and also its prominent chemopreventive properties and treatment mechanisms. Most of the studies mentioned in this review paper may be useful use as a knowledge summary to explain ZER extraction and anticancer activities, which will show a way for the development of strategies in the treatment of malignancies using ZER.
    Matched MeSH terms: Anti-Inflammatory Agents/isolation & purification; Anti-Inflammatory Agents/pharmacology; Anti-Inflammatory Agents/chemistry
  12. Karunakaran T, Ee GC, Teh SS, Daud S, Mah SH, Lim CK, et al.
    Nat Prod Res, 2016 Jul;30(14):1591-7.
    PMID: 26710827 DOI: 10.1080/14786419.2015.1120727
    A new alkylated coumarin derivative, hexapetarin (1) along with three other xanthones, trapezifolixanthone (2), cudraxanthone G (3) and 1,3,7-trihydroxy-2,4-di (3-methyl-2-butenyl)xanthone (4), and four common triterpenoids, friedelin (5), stigmasterol (6), beta-sitosterol (7) and gamma-sitosterol (8) were isolated from the stem bark of Mesua hexapetala (Clusiaceae), a plant, native to Malaysia. The structures of these compounds were elucidated and determined using spectroscopic techniques such as NMR and MS. Anti-inflammatory activity assay indicated hexapetarin (1) to possess moderate anti-inflammatory activity, while 1,3,7-trihydroxy-2,4-di (3-methyl-2-butenyl)xanthone (4) gave very good activity.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/pharmacology
  13. Ellulu MS, Khaza'ai H, Abed Y, Rahmat A, Ismail P, Ranneh Y
    Inflammopharmacology, 2015 Jun;23(2-3):79-89.
    PMID: 25676565 DOI: 10.1007/s10787-015-0228-1
    The roles of Omega-3 FAs are inflammation antagonists, while Omega-6 FAs are precursors for inflammation. The plant form of Omega-3 FAs is the short-chain α-linolenic acid, and the marine forms are the long-chain fatty acids: docosahexaenoic acid and eicosapentaenoic acid. Omega-3 FAs have unlimited usages, and they are considered as omnipotent since they may benefit heart health, improve brain function, reduce cancer risks and improve people's moods. Omega-3 FAs also have several important biological effects on a range of cellular functions that may decrease the onset of heart diseases and reduce mortality among patients with coronary heart disease, possibly by stabilizing the heart's rhythm and by reducing blood clotting. Some review studies have described the beneficial roles of Omega-3 FAs in cardiovascular diseases (CVDs), cancer, diabetes, and other conditions, including inflammation. Studies of the effect of Omega-3 FAs gathered from studies in diseased and healthy population. CVDs including atherosclerosis, coronary heart diseases, hypertension, and metabolic syndrome were the major fields of investigation. In studies of obesity, as the central obesity increased, the level of adipocyte synthesis of pro-inflammatory cytokines like tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) were increased and the level of anti-inflammatory adiponectin was decreased indicating a state of inflammation. The level of C reactive protein (CRP) synthesized from hepatocyte is increased by the influence of IL-6. CRP can be considered as a marker of systemic inflammation associated with increased risks of CVDs. In molecular studies, Omega-3 FAs have direct effects on reducing the inflammatory state by reducing IL-6, TNF-α, CRP and many other factors. While the appropriate dosage along with the administrative duration is not known, the scientific evidence-based recommendations for daily intake are not modified.
    Matched MeSH terms: Anti-Inflammatory Agents/administration & dosage*
  14. Somchit MN, Mohamed NA, Ahmad Z, Zakaria ZA, Shamsuddin L, Omar-Fauzee MS, et al.
    Pak J Pharm Sci, 2014 Sep;27(5):1277-80.
    PMID: 25176383
    Spirulina spp. is a blue-green algae belongs to the family of Oscillatoriaceae, which having diverse biological activity. The aim of this current study was to evaluate and compare the anti-pyretic and anti-inflammatory activity of Spirulina platensis/SP and Spirulina lonar/SL extracts. In the anti-pyretic study, the ability to reduce the rectal temperature of rats induced pyrexia with 2g/kg Brewer's Yeast (BY) was performed. Rats were dosed either 2 or 4 mg/kg SP or SL. Rectal temperature was taken every hour for 8 hours. Results shown that there were significant dose-dependent (p<0.05) reduction of both treatments. However, SP treatment revealed faster reduction in rectal temperature. For anti-inflammatory activity, the reduction in the volume of paw edema induced by Prostaglandin E2 (100 IU/rat intraplantar) was measured. Rats were dosed orally with 2 or 4 mg/kg SP or SL. The paw edema was measured every 30 minutes for 4 hours using plethysmometer. Results had shown a significant dose dependent reduction in diameter of paw edema (p<0.05). The finding suggests that SP and SL extracts have anti-pyretic and anti-inflammatory properties. However, SP was found to be more effective than SL as anti-pyretic and anti-inflammatory agent.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  15. Lee YY, Gangireddy V, Khurana S, Rao SS
    Gastroenterology, 2014 Aug;147(2):544.
    PMID: 24976027 DOI: 10.1053/j.gastro.2014.03.053
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/therapeutic use*
  16. Zyoud SH, Al-Jabi SW, Sweileh WM
    Hum Exp Toxicol, 2015 Jan;34(1):12-23.
    PMID: 24758786 DOI: 10.1177/0960327114531993
    PURPOSE: There is a lack of data concerning the evaluation of scientific research productivity in paracetamol poisoning from the world. The purposes of this study were to analyse the worldwide research output related to paracetamol poisoning and to examine the authorship pattern and the citations retrieved from the Scopus database for over a decade.
    METHODS: Data were searched for documents with specific words regarding paracetamol poisoning as 'keywords' in the title or/and abstract. Scientific output was evaluated based on a methodology developed and used in other bibliometric studies. Research productivity was adjusted to the national population and nominal gross domestic product (GDP) per capita.
    RESULTS: There were 1721 publications that met the criteria during study period from the world. All retrieved documents were published from 72 countries. The largest number of articles related to paracetamol poisoning was from the United States (US; 30.39%), followed by India (10.75%) and the United Kingdom (UK; 9.36%). The total number of citations at the time of data analysis was 21,109, with an average of 12.3 citations per each documents and median (interquartile range) of 4 (1-14). The h-index of the retrieved documents was 57. After adjusting for economy and population power, India (124.2), Nigeria (18.6) and the US (10.5) had the highest research productivity. Countries with large economies, such as the UK, Australia, Japan, China and France, tended to rank relatively low after adjustment for GDP over the entire study period.
    CONCLUSION: Our study demonstrates evidence that research productivity related to paracetamol poisoning has increased rapidly during the recent years. The US obviously dominated in research productivity. However, certain smaller country such as Nigeria has high scientific output relative to their population size and GDP. A highly noticeable increase in the contributions of Asia-Pacific and Middle East regions to scientific literature related to paracetamol poisoning was also observed.
    KEYWORDS: Bibliometric; Scopus; acetaminophen; citations; paracetamol; poisoning
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/poisoning*
  17. Kamarudin NH, Jalil AA, Triwahyono S, Artika V, Salleh NF, Karim AH, et al.
    J Colloid Interface Sci, 2014 May 1;421:6-13.
    PMID: 24594025 DOI: 10.1016/j.jcis.2014.01.034
    Mesoporous silica nanoparticles (MSNs) were synthesized with variable microwave power in the range of 100-450 W, and the resulting enhancement of MSN crystal growth was evaluated for the adsorption and release of ibuprofen. X-ray diffraction (XRD) revealed that the MSN prepared under the highest microwave power (MSN450) produced the most crystallized and prominent mesoporous structure. Enhancement of the crystal growth improved the hexagonal order and range of silica, which led to greater surface area, pore width and pore volume. MSN450 exhibited higher ibuprofen adsorption (98.3 mg/g), followed by MSN300(81.3 mg/g) and MSN100(74.1 mg/g), confirming that more crystallized MSN demonstrated higher adsorptivity toward ibuprofen. Significantly, MSN450 also contained more hydroxyl groups that provided more adsorption sites. In addition, MSN450 exhibited comparable ibuprofen adsorption with conventionally synthesized MSN, indicating the potential of microwave treatment in the synthesis of related porous materials. In vitro drug release was also investigated with simulated biological fluids and the kinetics was studied under different pH conditions. MSN450 showed the slowest release rate of ibuprofen, followed by MSN300 and MSN100. This was due to the wide pore diameter and longer range of silica order of the MSN450. Ibuprofen release from MSN450 at pH 5 and 7 was found to obey a zero-order kinetic model, while release at pH 2 followed the Kosmeyer-Peppas model.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage*
  18. Rezaee M, Basri M, Rahman RN, Salleh AB, Chaibakhsh N, Karjiban RA
    Int J Nanomedicine, 2014;9:539-48.
    PMID: 24531324 DOI: 10.2147/IJN.S49616
    Response surface methodology was employed to study the effect of formulation composition variables, water content (60%-80%, w/w) and oil and surfactant (O/S) ratio (0.17-1.33), as well as high-shear emulsification conditions, mixing rate (300-3,000 rpm) and mixing time (5-30 minutes) on the properties of sodium diclofenac-loaded palm kernel oil esters-nanoemulsions. The two response variables were droplet size and viscosity. Optimization of the conditions according to the four variables was performed for preparation of the nanoemulsions with the minimum values of particle size and viscosity. The results showed that the experimental data could be sufficiently fitted into a third-order polynomial model with multiple regression coefficients (R(2) ) of 0.938 and 0.994 for the particle size and viscosity, respectively. Water content, O/S ratio and mixing time, quadrics of all independent variables, interaction between O/S ratio and mixing rate and between mixing time and rate, as well as cubic term of water content had a significant effect (P<0.05) on the particle size of nanoemulsions. The linear effect of all independent variables, quadrics of water content and O/S ratio, interaction of water content and O/S ratio, as well as cubic term of water content and O/S ratio had significant effects (P<0.05) on the viscosity of all nanoemulsions. The optimum conditions for preparation of sodium diclofenac nanoemulsions were predicted to be: 71.36% water content; 0.69 O/S ratio; 950 rpm mixing rate, and 5 minute mixing time. The optimized formulation showed good storage stability in different temperatures.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage*
  19. Bastion ML, Mohamad MH
    BMJ Case Rep, 2012;2012.
    PMID: 22914237 DOI: 10.1136/bcr-2012-006525
    To describe the rare presentation of sympathetic ophthalmia in a teenage girl with no previous known ocular injury.
    Matched MeSH terms: Anti-Inflammatory Agents/therapeutic use
  20. Goh KL, Chan WK
    Aliment Pharmacol Ther, 2012 Aug;36(3):291-2; discussion 292-3.
    PMID: 22747451 DOI: 10.1111/j.1365-2036.2012.05164.x
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/adverse effects*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links