METHOD: Blood samples were obtained from 20 healthy blood donors, 30 RA patients who presented with anaemia and 30 patients who had pure iron deficiency anaemia (IDA). The samples were analysed for full blood count, iron, ferritin, transferrin, soluble transferrin receptor and prohepcidin.
RESULTS: The mean prohepcidin level in the control subjects was 256 microg/L. The prohepcidin level was significantly lower in IDA patients (100 microg/L; p < 0.0001) but not significantly different from that of control in RA patients (250 microg/L; p > 0.05). Higher serum soluble transferrin receptor (sTfR) levels were observed in IDA (p < 0.0001) but not in RA compared with that of control (p > 0.05). RA patients were divided into iron depleted and iron repleted subgroups based on the ferritin level. Prohepcidin in the iron depleted group was significantly lower than the iron repleted group and the control (p < 0.0001) and higher levels were observed in the iron repleted group (p < 0.01). sTfR levels in the iron depleted group were significantly higher than the control and the iron repleted patients (p < 0.001). In the iron repleted group, sTfR level was not statistically different from that of control (p > 0.05).
CONCLUSION: Serum prohepcidin is clearly reduced in uncomplicated iron deficiency anaemia. The reduced prohepcidin levels in the iron depleted RA patients suggests that there may be conflicting signals regulating hepcidin production in RA patients. In RA patients who have reduced hepcidin in the iron depleted group (ferritin <60 microg/L) where sTfR levels are increased suggests that these patients are iron deficient. Further studies with a larger cohort of patients are required to substantiate this point.
METHODS: Maximal non-toxic dose (MNTD) of methanol extract of P. ginseng root culture on BV2 microglia cells was first determined via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, followed by treatment and LPS stimulation of cells, and the measurement of NO using Griess assay and TNF-α, IL-6, and IL-10 using ELISA assay.
RESULTS: The MNTD of P. ginseng root extract was determined to be (587 ± 57) µg/mL. Following that, NO and IL-6 levels were found to be insignificantly reduced by 6.88% and 0.14% respectively in stimulated cells upon treatment with MNTD. Treatment with MNTD yielded similar insignificant result, with only a reduction of 3.58% and 0.08% in NO and IL-6 levels respectively. However, TNF-α and IL-10 levels were significantly downregulated by 15.64% and 34.96% respectively upon treatment with P. ginseng root extract at MNTD.
CONCLUSION: Methanol extract of P. ginseng root culture did not show any significant anti-inflammatory effects on NO and IL-6 levels, but might potentially possess both anti-neuroinflammatory and pro-neuroinflammatory properties through the downregulation of TNF-α and IL-10 respectively.