MATERIALS AND METHODS: We retrospectively studied CD56 expression in 54 benign and 54 malignant thyroid lesions using archival formalin fixed paraffin-embedded tissue blocks for the study period from January 2010 to December 2015, diagnosed in a tertiary hospital.
RESULTS: CD56 was expressed in 52/54 (96.3%) of benign specimens and only 24/54 (44.4%) of malignant ones. The malignant specimens comprised 31 (57.4%) papillary thyroid carcinomas (PTC), 11 (20.3%) follicular carcinomas (FC), seven (13%) medullary thyroid carcinomas (MC), one (1.9%) poorly differentiated carcinoma (PC) and four (7.4%) anaplastic carcinomas (AC). CD56 was not expressed in 28/31 (90.3%) of the PTCs, 1/11 (9.1%) FCs, 1/4 (25%) of ACs while all MCs and the PD were positive. The benign group comprised nodular hyperplasias (29/54), lymphocytic thyroiditis (10/54), follicular adenomas (FA) (14/54) and one hyalinising trabecular tumour. CD56 was expressed in all the benign cases except one FA and one nodular hyperplasia. Thirteen of the 14 FAs were CD56 positive. The difference in expression between benign and malignant tumours was statistically significant as the p value was <0.01.
CONCLUSION: CD56 is a potentially good immunohistochemical marker for differentiating papillary thyroid carcinoma from other benign follicular lesions of the thyroid especially in differentiating follicular variant PTC from FA in equivocal cases.
Methods: BZD9L1 and 5-FU either as single treatment or in combination were tested against CRC cells to evaluate synergism in cytotoxicity, senescence and formation of micronucleus, cell cycle and apoptosis, as well as the regulation of related molecular players. The effects of combined treatments at different doses on stress and apoptosis, migration, invasion and cell death mechanism were evaluated through two-dimensional and three-dimensional cultures. In vivo studies include investigation on the combination effects of BZD9L1 and 5-FU on colorectal tumour xenograft growth and an evaluation of tumour proliferation and apoptosis using immunohistochemistry.
Results: Combination treatments exerted synergistic reduction on cell viability on HCT 116 cells but not on HT-29 cells. Combined treatments reduced survival, induced cell cycle arrest, apoptosis, senescence and micronucleation in HCT 116 cells through modulation of multiple responsible molecular players and apoptosis pathways, with no effect in epithelial mesenchymal transition (EMT). Combination treatments regulated SIRT1 and SIRT2 protein expression levels differently and changed SIRT2 protein localization. Combined treatment reduced growth, migration, invasion and viability of HCT 116 spheroids through apoptosis, when compared with the single treatment. In addition, combined treatment was found to reduce tumour growth in vivo through reduction of tumour proliferation and necrosis compared with the vehicle control group. This highlights the potential therapeutic effects of BZD9L1 and 5-FU towards CRC.
Conclusion: This study may pave the way for use of BZD9L1 as an adjuvant to 5-FU in improving the therapeutic efficacy for the treatment of colorectal cancer.
A 47-year-old gentleman of Malay ethnicity with no known pre-morbidities, presented to the haematology unit with a 2-month history of night fever, loss of weight, malaise, anorexia and abdominal swelling. Abdominal examination revealed a periumbilical and lower epigastric swelling measuring 6x6 cms. The swelling was non-tender, firm in consistency and smooth on palpation. The Contrast Enhanced Computed Tomography (CECT) imaging revealed an enlarged mesenteric mass measuring 5.8x6.9x5.7 cm and multiple enlarged aorta-caval lymph nodes. The mesenteric tumour histology and immunohistochemistry were consistent with lymphocyte depleted HL. He completed six cycles of intravenous ABVD polychemotherapy consisting of doxorubicin (Adriamycin) 25mg/m2, Bleomycin 10mg/m2, Vinblastine 6mg/m2 and Dacarbazine 375mg/m2. The Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG PET /CT) imaging post 2 cycles and 6 cycles of ABVD polychemotherapy showed complete metabolic response to chemotherapy.
Conclusion: Lymphocyte-depleted classical Hodgkin lymphoma (LDcHL) is a rare entity and is mostly diagnosed at a later stage rendering it a disease with poor prognostic outcomes. Early detection and prompt institution of therapy is crucial in the management of this disease.
METHODS: A total of 82 archived paraffin embedded HM tissues with subtypes classified based on H&E staining - 39 (47.5%) CHM, 41 (50.0%) PHM and two (2.43%) unclassified molar pregnancy were retrieved. All tissue samples were subjected for p57kip2 IHC analysis and HM subtypes were then reclassified.
RESULTS: A total of 66 cases (80.5%) were re-classified as CHM, 14 cases (17.1%) as PHM and two cases (2.4%) were decidual and cystic tissues. Analysis using p57kip2 immunostaining showed a diagnostic discrepancy of 33.0% from routine H&E staining and helps to improve the characterisation of the HM subtypes specifically at early gestations which have less distinctive morphologies.
CONCLUSIONS: IHC using p57kip2 monoclonal antibody should be considered as a routine ancillary test to H&E in improving the diagnosis of HM subtypes particularly in developing countries with limited resources.
METHODS: Two rat models were used: (i) ovariectomised, sex-steroid replaced and (ii) intact, at different phases of oestrous cycle. A day after completion of sex-steroid treatment or following identification of oestrous cycle phases, rats were sacrificed and expression and distribution of these proteins in uterus were identified by Western blotting and immunohistochemistry, respectively.
RESULTS: Expression of TRα-1, TRβ-1, TSHR, VDR, RAR and ERK1/2 in uterus was higher following estradiol (E2) treatment and at estrus phase of oestrous cycle when E2levels were high. A relatively lower expression was observed following progesterone (P) treatment and at diestrus phases of oestrous cycle when P levels were high. Under E2influence, TRα, TRβ, TSHR, VDR, RAR and ERK1/2 were distributed in luminal and glandular epithelia while under P influence, TSHR, VDR abn RAR were distributed in the stroma.
CONCLUSIONS: Differential expression and distribution of TRα-1, TRβ-1, TSHR, VDR, RAR and ERK1/2 in different uterine compartments could explain differential action of thyroid hormone, TSH, vitamin D, and retinoic acid in uterus under different sex-steroid conditions.
MATERIALS AND METHODS: This is a retrospective, cross-sectional study from January 1, 2015 to December 31, 2015. A total of 30 placentae comprised of 15 hypertensive and 15 normotensive cases were assessed. VEGF expression in placenta was assessed by immunohistochemistry, and the number of syncytial knots was counted.
RESULTS: Our study showed an increased syncytial knot formation in the placenta of hypertensive mothers. VEGF expression was seen in syncytiotrophoblasts of 14 of the hypertensive cases (14/15, 93.3%), while only two of the normotensive cases were positive (2/15, 13.3%). There were no statistically significant differences in VEGF expression in other placenta cells, that is, cytotrophoblasts (P = 1.0), decidual cells (0.1394), maternal endothelial cells (0.5977), and fetal endothelial cells (P = 1.0).
CONCLUSIONS: This study showed an increased number of syncytial knots is a consistent histological finding in the placenta of patient with HDP. VEGF expression was significantly increased in syncytiotrophoblasts in placenta of hypertensive group, and it could be used as a biomarker for hypertension.