DESIGN: fNIRS data were recorded from 23 infants with no known hearing loss, aged 2 to 10 months. Speech syllables were presented using a habituation/dishabituation test paradigm: the infant's heart rate response was first habituated by repeating blocks of one speech sound; then, the heart rate response was dishabituated with the contrasting (novel) speech sound. This stimulus presentation sequence was repeated for as long as the infants were asleep.
RESULTS: The group-level average heart rate response to the novel stimulus was greater than that to the habituated first sound, indicating that sleeping infants were able to discriminate the speech sound contrast. A significant adaptation of the heart rate responses was seen over the session duration.
CONCLUSION: The dishabituation response could be a valuable marker for speech discrimination, especially when used in conjunction with the fNIRS hemodynamic response.
METHODS AND ANALYSIS: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Protocols statement was used as a template for this protocol. A systematic search of Medline, Embase and Global Health from database inception to present will be conducted to identify prospective studies reporting on the associations between major measures of body composition (body mass index, waist circumference, waist-hip ratio, total body fat, visceral adiposity tissue and lean mass) and risk of heart failure. Article screening and selection will be performed by two reviewers independently, and disagreements will be adjudicated by consensus or by a third reviewer. Data from eligible articles will be extracted, and article quality will be assessed using the Newcastle-Ottawa Scale. Relative risks (and 95% CIs) will be pooled in a fixed effect meta-analysis, if there is no prohibitive heterogeneity of studies as assessed using the Cochrane Q statistic and I2 statistic. Subgroup analyses will be by age, sex, ethnicity and heart failure subtypes. Publication bias in the meta-analysis will be assessed using Egger's test and funnel plots.
ETHICS AND DISSEMINATION: This work is secondary analyses on published data and ethical approval is not required. We plan to publish results in an open-access peer-reviewed journal, present it at international and national conferences, and share the findings on social media.
PROSPERO REGISTRATION NUMBER: CRD42020224584.
METHODS: High-resolution fluorescent optical mapping of electrical activity and electrocardiogram measurements were used to characterize effects of UDCA on one-day-old neonatal and adult female Langendorff-perfused rat hearts. ICP was modelled by perfusion of taurocholic acid (TC, 400μM). Whole-cell calcium currents were recorded from neonatal rat and human fetal cardiomyocytes.
RESULTS: TC significantly prolonged the PR interval by 11.0±3.5% (P<0.05) and slowed ventricular conduction velocity (CV) by 38.9±5.1% (P<0.05) exclusively in neonatal and not in maternal hearts. A similar CV decline was observed with the selective T-type calcium current (ICa,T) blocker mibefradil 1μM (23.0±6.2%, P<0.05), but not with the L-type calcium current (ICa,L) blocker nifedipine 1μM (6.9±6.6%, NS). The sodium channel blocker lidocaine (30μM) reduced CV by 60.4±4.5% (P<0.05). UDCA co-treatment was protective against CV slowing induced by TC and mibefradil, but not against lidocaine. UDCA prevented the TC-induced reduction in the ICa,T density in both isolated human fetal (-10.2±1.5 versus -5.5±0.9 pA/pF, P<0.05) and neonatal rat ventricular myocytes (-22.3±1.1 versus -9.6±0.8 pA/pF, P<0.0001), whereas UDCA had limited efficacy on the ICa,L.
CONCLUSION: Our findings demonstrate that ICa,T plays a significant role in ICP-associated fetal cardiac conduction slowing and arrhythmogenesis, and is an important component of the fetus-specific anti-arrhythmic activity of UDCA.