Displaying publications 181 - 200 of 610 in total

Abstract:
Sort:
  1. Kumar S, Lim SM, Ramasamy K, Mani V, Shah SAA, Narasimhan B
    Chem Cent J, 2018 Jun 25;12(1):73.
    PMID: 29938365 DOI: 10.1186/s13065-018-0440-3
    BACKGROUND: Pyrimidine molecules attracted organic chemists very much due to their biological and chemotherapeutic importance. Their related fused heterocycles are of interest as potential bioactive molecules so, we have designed and prepared a new class of 4,4'-(1,4-phenylene)bis(pyrimidin-2-amine) molecules and screened for their in vitro antibacterial, antifungal and cytotoxicity studies.

    RESULTS: The structures of synthesized bis-pyrimidine molecules were confirmed by physicochemical and spectral means. The synthesized compounds were further evaluated for their in vitro biological potentials i.e. antimicrobial activity using tube dilution method and anticancer activity against human colorectal carcinoma (HCT116) cancer cell line by Sulforhodamine B assay.

    CONCLUSIONS: The biological study demonstrated that compounds s7, s8, s11, s14, s16, s17 and s18 have shown more promising antimicrobial activity with best MIC values than the cefadroxil (antibacterial) and fluconazole (antifungal) and compound s3 found to have better anticancer activity against human colorectal carcinoma (HCT116) cancer cell line.

  2. Cui YC, Wu Q, Teh SW, Peli A, Bu G, Qiu YS, et al.
    Microb Pathog, 2018 Sep;122:130-136.
    PMID: 29909241 DOI: 10.1016/j.micpath.2018.06.021
    The recent global resurgence of arthritogenic alphaviruses, including Ross River, chikungunya, and dengue, highlights an urgency for the development of therapeutic strategies. Currently, dengue represents the most rapidly transmitting mosquito-borne viral disease worldwide. By contracting bone breaking diseases, patients experience devastating clinical manifestations involving muscle pain and bone loss. The bone self-repair and regeneration mechanisms can be damaged by the presence of viruses and bacteria. The rapid establishment of dengue epidemic and the severity of bacterial and viral infections affecting the bone stress the urgent need of developing effective interventions. Herein, we review current knowledge on bone breaking infections, covering both bacterial and mosquito-borne viral ones. The mechanisms exploited by these diseases to significantly affect the bone, including interferences with self-repair and regeneration routes, were discussed. In the final section, challenges for future research aimed to treat and prevent bacterial and mosquito-borne bone-breaking infections have been outlined.
  3. Kumar S, Narasimhan B, Lim SM, Ramasamy K, Mani V, Shah SAA
    Mini Rev Med Chem, 2019;19(10):851-864.
    PMID: 30306864 DOI: 10.2174/1389557518666181009141924
    BACKGROUND: A series of 5-(2-amino-6-(3/4-bromophenyl)pyrimidin-4-yl)benzene-1,3-diol scaffolds was synthesized by Claisen-Schmidt condensation and characterized by NMR, IR, Mass and elemental analyses.

    METHODS: The synthesized pyrimidine scaffolds were screened for their antimicrobial activity by tube dilution method as well for antiproliferative activity (human colorectal (HCT116) cancer cell line) by SRB assay.

    RESULTS: The antimicrobial screening results demonstrated that compounds, k6, k12, k14 and k20 were found to be the most potent ones against selected microbial species. The anticancer screening results indicated that compounds, k8 and k14 displayed potent anticancer activity against cancer cell line (HCT116).

    CONCLUSION: Further, the molecular docking study carried to find out the interaction between active pyrimidine compounds with CDK-8 protein indicated that compound k14 showed best dock score with better potency within the ATP binding pocket and may be used as a lead for rational drug designing of the anticancer molecule.

  4. Kumar S, Singh J, Narasimhan B, Shah SAA, Lim SM, Ramasamy K, et al.
    Chem Cent J, 2018 Oct 22;12(1):106.
    PMID: 30345469 DOI: 10.1186/s13065-018-0475-5
    BACKGROUND: Pyrimidine is an important pharmacophore in the field of medicinal chemistry and exhibit a broad spectrum of biological potentials. A study was carried out to identify the target protein of potent bis-pyrimidine derivatives using reverse docking program. PharmMapper, a robust online tool was used for identifying the target proteins based on reverse pharmacophore mapping. The murine macrophage (RAW 264.7) and human embryonic kidney (HEK-293) cancer cell line used for selectivity and safety study.

    METHODS: An open web server PharmMapper was used to identify the possible target of the developed compounds through reverse pharmacophore mapping. The results were analyzed and validated through docking with Schrodinger v9.6 using 10 protein GTPase HRas selected as possible target. The docking studies with Schrödinger validated the binding behavior of bis-pyrimidine compounds within GTP binding pocket. MTT and sulforhodamine assay were used as antiproliferative activity.

    RESULTS AND DISCUSSION: The protein was found one of the top scored targets of the compound 18, hence, the GTPase HRas protein was found crucial to be targeted for competing cancer. Toxicity study demonstrated the significant selectivity of most active compounds, 12, 16 and 18 showed negligible cell toxicity at their IC50 concentration.

    CONCLUSION: From the results, we may conclude that GTPase HRas as a possible target of studied bis-pyrimidine derivatives where the retrieved information may be quite useful for rational drug designing.

  5. Kakkar S, Kumar S, Narasimhan B, Lim SM, Ramasamy K, Mani V, et al.
    Chem Cent J, 2018 Sep 19;12(1):96.
    PMID: 30232633 DOI: 10.1186/s13065-018-0464-8
    BACKGROUND: Benzoxazole is the most important class of heterocyclic compound in medicinal chemistry. It has been incorporated in many medicinal compounds making it a versatile heterocyclic compound that possess a wide spectrum of biological activities.

    RESULTS: The molecular structures of synthesized benzoxazole derivatives were confirmed by physicochemical and spectral means. The synthesized compounds were further evaluated for their in vitro biological potentials i.e. antimicrobial activity against selected microbial species using tube dilution method and antiproliferative activity against human colorectal carcinoma (HCT 116) cancer cell line by Sulforhodamine B assay.

    CONCLUSION: In vitro antimicrobial results demonstrated that compounds 4, 5, 7 and 16 showed promising antimicrobial potential. The in vitro anticancer activity indicated that compounds 4 and 16 showed promising anticancer activity against human colorectal cancer cell line (HCT 116) when compared to standard drug and these compounds may serve as lead compound for further development of novel antimicrobial and anticancer agents.

  6. Kashyap S, Kumar S, Ramasamy K, Lim SM, Shah SAA, Om H, et al.
    Chem Cent J, 2018 Nov 20;12(1):117.
    PMID: 30460466 DOI: 10.1186/s13065-018-0487-1
    BACKGROUND: The transition metal complexes formed from Schiff base is regarded as leading molecules in medicinal chemistry. Because of the preparative availability and diversity in the structure of central group, the transition metals are important in coordination chemistry. In the present work, we have designed and prepared Schiff base and its metal complexes (MC1-MC4) and screened them for antimicrobial, anticancer and corrosion inhibitory properties.

    METHODOLOGY: The synthesized metal complexes were characterized by physicochemical and spectral investigation (UV, IR, 1H and 13C-NMR) and were further evaluated for their antimicrobial (tube dilution) and anticancer (SRB assay) activities. In addition, the corrosion inhibition potential was determined by electrochemical impedance spectroscopy (EIS) technique.

    RESULTS AND DISCUSSION: Antimicrobial screening results found complexes (MC1-MC4) to exhibit less antibacterial activity against the tested bacterial species compared to ofloxacin while the complex MC1 exhibited greater antifungal activity than the fluconazole. The anticancer activity results found the synthesized Schiff base and its metal complexes to elicit poor cytotoxic activity than the standard drug (5-fluorouracil) against HCT116 cancer cell line. Metal complex MC2 showed more corrosion inhibition efficiency with high Rct values and low Cdl values.

    CONCLUSION: From the results, we can conclude that complexes MC1 and MC2 may be used as potent antimicrobial and anticorrosion agents, respectively.

  7. Kakkar S, Kumar S, Lim SM, Ramasamy K, Mani V, Shah SAA, et al.
    Chem Cent J, 2018 Dec 04;12(1):130.
    PMID: 30515643 DOI: 10.1186/s13065-018-0499-x
    BACKGROUND: In view of wide range of biological activities of oxazole, a new series of oxazole analogues was synthesized and its chemical structures were confirmed by spectral data (Proton/Carbon-NMR, IR, MS etc.). The synthesized oxazole derivatives were screened for their antimicrobial and antiproliferative activities.

    RESULTS AND DISCUSSION: The antimicrobial activity was performed against selected fungal and bacterial strains using tube dilution method. The antiproliferative potential was evaluated against human colorectal carcinoma (HCT116) and oestrogen- positive human breast carcinoma (MCF7) cancer cell lines using Sulforhodamine B assay and, results were compared to standard drugs, 5-fluorouracil and tamoxifen, respectively.

    CONCLUSION: The performed antimicrobial activity indicated that compounds 3, 5, 6, 8 and 14 showed promising activity against selected microbial species. Antiproliferative screening found compound 14 to be the most potent compound against HCT116 (IC50 = 71.8 µM), whereas Compound 6 was the most potent against MCF7 (IC50 = 74.1 µM). Further, the molecular docking study has been carried to find out the interaction between active oxazole compounds with CDK8 (HCT116) and ER-α (MCF7) proteins indicated that compound 14 and 6 showed good dock score with better potency within the ATP binding pocket and may be used as a lead for rational drug designing of the anticancer molecule.

  8. Samrot AV, Bhavya KS, Angalene JLA, Roshini SM, Preethi R, Steffi SM, et al.
    Int J Biol Macromol, 2020 Jun 15;153:1024-1034.
    PMID: 31751703 DOI: 10.1016/j.ijbiomac.2019.10.232
    Surface engineering of super paramagnetic iron oxide nanoparticles (SPIONs) favor the tagging of any molecule or compound onto it, encapsulating them with a biopolymer make them biocompatible and favor slow release of loaded molecules. Recovery of SPIONs is easier as they obey to external magnetic field. In this study, SPIONS were used for mosquito larvicidal activity after surface engineered with oleic acid to favor the tagging of Cyfluthrin (mosquito larvicidal agent), it was then encapsulated with gum polysaccharide derived from Azadirachta indica and Araucaria heterophylla. Every stage of coreshell formation was microscopically and spectroscopically characterized. The coreshell SPIONs produced using Azadirachta indica and Araucaria heterophylla gum derived polysaccharide encapsulation were found to be the size around 80 nm. Thus, prepared coreshell SPIONs was subjected for mosquito larvicidal activity against Culex sp. The coreshell SPIONs was efficiently killing the mosquito larva and its impact was studied by percentage mortality studies.
  9. Sun Z, Xiong C, Teh SW, Lim JCW, Kumar S, Thilakavathy K
    PMID: 31867287 DOI: 10.3389/fcimb.2019.00412
    Pancreatic cancer is a highly lethal disease, and most patients remain asymptomatic until the disease enters advanced stages. There is lack of knowledge in the pathogenesis, effective prevention and early diagnosis of pancreatic cancer. Recently, bacteria were found in pancreatic tissue that has been considered sterile before. The distribution of flora in pancreatic cancer tissue was reported to be different from normal pancreatic tissue. These abnormally distributed bacteria may be the risk factors for inducing pancreatic cancer. Therefore, studies on combined effect of multi-bacterial and multi-virulence factors may add to the knowledge of pancreatic cancer pathogenesis and aid in designing new preventive and therapeutic strategies. In this review, we outlined three oral bacteria associated with pancreatic cancer and their virulence factors linked with cancer.
  10. Varadan M, Gopalkrishna P, Bhat PV, Kamath SU, S K, K TG, et al.
    Clin Oral Investig, 2019 Aug;23(8):3249-3255.
    PMID: 30430337 DOI: 10.1007/s00784-018-2741-2
    OBJECTIVES: Periodontal disease and polycystic ovary syndrome (PCOS) share risk factors like obesity, insulin resistance, and dyslipidemia, along with evidence of chronic inflammation in the two conditions. Evaluating the influence of PCOS on periodontal health would, therefore, identify a possible association.

    MATERIALS AND METHODS: Sixty women, divided into equal groups of PCOS and healthy patients, were clinically examined for periodontal parameters like probing depth (PD), plaque index (PI), modified gingival index (mGI), and bleeding on probing (BOP). Fasting blood sugar (FBS), insulin (FI), triglycerides (TG), and free testosterone along with serum and gingival crevicular fluid (GCF) levels of malondialdehyde (MDA) and myeloperoxidase (MPO) were the biochemical parameters evaluated.

    RESULTS: Women with PCOS had statistically significant differences in mGI, PI, testosterone, FBS, and TG when compared with healthy women (p 

  11. Khabib MNH, Sivasanku Y, Lee HB, Kumar S, Kue CS
    Toxicology, 2022 01 15;465:153053.
    PMID: 34838596 DOI: 10.1016/j.tox.2021.153053
    Toxicity testing relies heavily on animals, especially rodents as part of the non-clinical laboratory testing of substances. However, the use of mammalians and the number of animals employed in research has become a concern for institutional ethics committees. Toxicity testing involving rodents and other mammals is laborious and costly. Alternatively, non-rodent models are used as replacement, as they have less ethical considerations and are cost-effective. Of the many alternative models that can be used as replacement models, which ones can be used in predictive toxicology? What is the correlation between these models and rodents? Are there standardized protocols governing the toxicity testing of these commonly used predictive models? This review outlines the common alternative animal models for predictive toxicology to address the importance of these models, the challenges, and their standard testing protocols.
  12. Govindaraj D, Rajan M, Munusamy MA, Alarfaj AA, Sadasivuni KK, Kumar SS
    Nanomedicine, 2017 Nov;13(8):2661-2669.
    PMID: 28800874 DOI: 10.1016/j.nano.2017.07.017
    Minerals substituted apatite (M-HA) nanoparticles were prepared by the precipitation of minerals and phosphate reactants in choline chloride-Thiourea (ChCl-TU) deep eutectic solvent (DESs) as a facile and green way approach. After preparation of nanoparticles (F-M-HA (F=Fresh solvent)), the DESs was recovered productively and reprocess for the preparation of R-M-HA nanoparticles (R=Recycle solvent).The functional groups, phase, surface texture and the elemental composition of the M-HA nanoparticles were evaluated by advance characterization methods. The physicochemical results of the current work authoritative the successful uses of the novel (ChCl-TU) DESs as eco-friendly recuperate and give the medium for the preparation of M-HA nanoparticles. Moreover, the as-synthesized both M-HA nanoparticles exhibit excellent biocompatibility, consisting of cell co-cultivation and cell adhesion, in vivo according to surgical implantation of Wistar rats.
  13. Kumarasamy V, Kuppusamy UR, Jayalakshmi P, Samudi C, Ragavan ND, Kumar S
    PLoS One, 2017;12(8):e0183097.
    PMID: 28859095 DOI: 10.1371/journal.pone.0183097
    Colorectal cancer (CRC) is one the most commonly diagnosed cancers worldwide and the number is increasing every year. Despite advances in screening programs, CRC remains as the second leading cause of cancer deaths in the United States. Oxidative stress plays an important role in the molecular mechanisms of colorectal cancer (CRC) and has been shown to be associated with Blastocystis sp., a common intestinal microorganism. In the present study, we aimed to identify a role for Blastocystis sp. in exacerbating carcinogenesis using in vivo rat model. Methylene blue staining was used to identify colonic aberrant crypt foci (ACF) and adenomas formation in infected rats whilst elevation of oxidative stress biomarker levels in the urine and serum samples were evaluated using biochemical assays. Histological changes of the intestinal mucosa were observed and a significant number of ACF was found in Blastocystis sp. infected AOM-rats compared to the AOM-controls. High levels of urinary oxidative indices including advanced oxidative protein products (AOPP) and hydrogen peroxide were observed in Blastocystis sp. infected AOM-rats compared to the uninfected AOM-rats. Our study provides evidence that Blastocystis sp. has a significant role in enhancing AOM-induced carcinogenesis by resulting damage to the intestinal epithelium and promoting oxidative damage in Blastocystis sp. infected rats.
  14. Huarte-Bonnet C, Kumar S, Saparrat MCN, Girotti JR, Santana M, Hallsworth JE, et al.
    Appl Biochem Biotechnol, 2018 Mar;184(3):1047-1060.
    PMID: 28942502 DOI: 10.1007/s12010-017-2608-z
    Several filamentous fungi are able to concomitantly assimilate both aliphatic and polycyclic aromatic hydrocarbons that are the biogenic by-products of some industrial processes. Cytochrome P450 monooxygenases catalyze the first oxidation reaction for both types of substrate. Among the cytochrome P450 (CYP) genes, the family CYP52 is implicated in the first hydroxylation step in alkane-assimilation processes, while genes belonging to the family CYP53 have been linked with oxidation of aromatic hydrocarbons. Here, we perform a comparative analysis of CYP genes belonging to clans CYP52 and CYP53 in Aspergillus niger, Beauveria bassiana, Metarhizium robertsii (formerly M. anisopliae var. anisopliae), and Penicillium chrysogenum. These species were able to assimilate n-hexadecane, n-octacosane, and phenanthrene, exhibiting a species-dependent modification in pH of the nutrient medium during this process. Modeling of the molecular docking of the hydrocarbons to the cytochrome P450 active site revealed that both phenanthrene and n-octacosane are energetically favored as substrates for the enzymes codified by genes belonging to both CYP52 and CYP53 clans, and thus appear to be involved in this oxidation step. Analyses of gene expression revealed that CYP53 members were significantly induced by phenanthrene in all species studied, but only CYP52X1 and CYP53A11 from B. bassiana were highly induced with n-alkanes. These findings suggest that the set of P450 enzymes involved in hydrocarbon assimilation by fungi is dependent on phylogeny and reveal distinct substrate and expression specificities.
  15. Gothai S, Muniandy K, Zarin MA, Sean TW, Kumar SS, Munusamy MA, et al.
    Pharmacogn Mag, 2017 Oct;13(Suppl 3):S462-S469.
    PMID: 29142400 DOI: 10.4103/pm.pm_368_16
    Background: Moringa oleifera (MO), commonly known as the drumstick tree, is used in folklore medicine for the treatment of skin disease.

    Objective: The objective of this study is to evaluate the ethyl acetate (EtOAc) fraction of MO leaves for in vitro antibacterial, antioxidant, and wound healing activities and conduct gas chromatography-mass spectrometry (GC-MS) analysis.

    Materials and Methods: Antibacterial activity was evaluated against six Gram-positive bacteria and 10 Gram-negative bacteria by disc diffusion method. Free radical scavenging activity was assessed by 1, 1-diphenyl-2-picryl hydrazyl (DPPH) radical hydrogen peroxide scavenging and total phenolic content (TPC). Wound healing efficiency was studied using cell viability, proliferation, and scratch assays in diabetic human dermal fibroblast (HDF-D) cells.

    Results: The EtOAc fraction showed moderate activity against all bacterial strains tested, and the maximum inhibition zone was observed against Streptococcus pyogenes (30 mm in diameter). The fraction showed higher sensitivity to Gram-positive strains than Gram-negative strains. In the quantitative analysis of antioxidant content, the EtOAc fraction was found to have a TPC of 65.81 ± 0.01. The DPPH scavenging activity and the hydrogen peroxide assay were correlated with the TPC value, with IC50 values of 18.21 ± 0.06 and 59.22 ± 0.04, respectively. The wound healing experiment revealed a significant enhancement of cell proliferation and migration of HDF-D cells. GC-MS analysis confirmed the presence of 17 bioactive constituents that may be the principal factors in the significant antibacterial, antioxidant, and wound healing activity.

    Conclusion: The EtOAc fraction of MO leaves possesses remarkable wound healing properties, which can be attributed to the antibacterial and antioxidant activities of the fraction.

    SUMMARY: Moringa oleifera (MO) leaf ethyl acetate (EtOAc) fraction possesses antibacterial activities toward Gram-positive bacteria such as Streptococcus pyogenes, Streptococcus faecalis, Bacillus subtilis, Bacillus cereus and Staphylococcus aureus, and Gram-negative bacteria such as Proteus mirabilis and Salmonella typhimuriumMO leaf EtOAc fraction contained the phenolic content of 65.81 ± 0.01 and flavonoid content of 37.1 ± 0.03, respectively. In addition, the fraction contained 17 bioactive constituents associated with the antibacterial, antioxidant, and wound healing properties that were identified using gas chromatography-mass spectrometry analysisMO leaf EtOAc fraction supports wound closure rate about 80% for treatments when compared with control group. Abbreviations used: MO: Moringa oleifera; EtOAc: Ethyl acetate; GC-MS: Gas Chromatography-Mass Spectrometry; HDF-D: Diabetic Human Dermal Fibroblast cells.

  16. Vimalraj S, Rajalakshmi S, Raj Preeth D, Vinoth Kumar S, Deepak T, Gopinath V, et al.
    Mater Sci Eng C Mater Biol Appl, 2018 Feb 01;83:187-194.
    PMID: 29208278 DOI: 10.1016/j.msec.2017.09.005
    Copper(II) complex of quercetin Cu+Q, mixed ligand complexes, quercetin-Cu(II)-phenanthroline [Cu+Q(PHt)] and quercetin-Cu(II)-neocuproine [Cu+Q(Neo)] have been synthesized and characterized. From the FT-IR spectroscopic studies, it was evident that C-ring of quercetin is involved in the metal chelation in all the three copper complexes. C-ring chelation was further proven by UV-Visible spectra and the presence of Cu(II) from EPR spectroscopic investigations. These complexes were found to have osteogenic and angiogenic properties, observed through in vitro osteoblast differentiation and chick embryo angiogenesis assay. In osteoblast differentiation, quercetin-Cu(II) complexes treatment increased calcium deposition and alkaline phosphatase activity (ALP) activity at the cellular level and stimulated Runx2 mRNA and protein, ALP mRNA and type 1 collagen mRNA expression at the molecular level. Among the complexes, Q+Cu(PHt) showed more effects on osteoblast differentiation when compared to that of other two copper complexes. Additionally, Q+Cu(Neo) showed more effect compared to Q+Cu. Furthermore, the effect of these complexes on osteoblast differentiation was confirmed by the expression of osteoblast specific microRNA, pre-mir-15b. The chick embryo angiogenesis assay showed that angiogenic parameters such as blood vessel length, size and junctions were stimulated by these complexes. Thus, the present study demonstrated that quercetin copper(II) complexes exhibit as a pharmacological agent for the orthopedic application.
  17. Higuchi A, Kumar SS, Benelli G, Alarfaj AA, Munusamy MA, Umezawa A, et al.
    Trends Biotechnol, 2017 11;35(11):1102-1117.
    PMID: 28751147 DOI: 10.1016/j.tibtech.2017.06.016
    Current clinical trials that evaluate human pluripotent stem cell (hPSC)-based therapies predominantly target treating macular degeneration of the eyes because the eye is an isolated tissue that is naturally weakly immunogenic. Here, we discuss current bioengineering approaches and biomaterial usage in combination with stem cell therapy for macular degeneration disease treatment. Retinal pigment epithelium (RPE) differentiated from hPSCs is typically used in most clinical trials for treating patients, whereas bone marrow mononuclear cells (BMNCs) or mesenchymal stem cells (MSCs) are intravitreally transplanted, undifferentiated, into patient eyes. We also discuss reported negative effects of stem cell therapy, such as patients becoming blind following transplantation of adipose-derived stem cells, which are increasingly used by 'stem-cell clinics'.
  18. Robert R, Lee DJ, Rodrigues KF, Hussein MA, Waheed Z, Kumar SV
    Zootaxa, 2016 Nov 29;4200(2):zootaxa.4200.2.2.
    PMID: 27988618 DOI: 10.11646/zootaxa.4200.2.2
    Acropora is the most biologically diverse group of reef-building coral, and its richness peaks at the Indo-Malay-Philippine Archipelago, the centre of global coral reef biodiversity. In this paper, we describe the species richness of Acropora fauna of North Borneo, East Malaysia, based on review of literature and as corroborated by voucher specimens. Eighty-three species of Acropora are reported here; four species are literature based and 79 are supported by voucher specimens that were subsequently photographed. New records for North Borneo were recorded for 12 species, including Acropora suharsonoi Wallace 1994 that was previously thought to be confined to a few islands along Lombok Strait, Indonesia. The diversity of Acropora in North Borneo is comparable to that of Indonesia and the Philippines, despite the area's smaller reef areas. This further reinforces its inclusion as part the global hotspot of coral biodiversity.
  19. Loh LC, Chin HK, Chong YY, Jeyaratnam A, Raman S, Vijayasingham P, et al.
    Singapore Med J, 2007 Sep;48(9):813-8.
    PMID: 17728961
    Klebsiella pneumoniae ranks high as a cause of community-acquired pneumonia in hospitalised patients in Malaysia.
  20. Praveena SM, Teh SW, Rajendran RK, Kannan N, Lin CC, Abdullah R, et al.
    Environ Sci Pollut Res Int, 2018 Apr;25(12):11333-11342.
    PMID: 29546515 DOI: 10.1007/s11356-018-1652-8
    Phthalates have been blended in various compositions as plasticizers worldwide for a variety of purposes. Consequently, humans are exposed to a wide spectrum of phthalates that needs to be researched and understood correctly. The goal of this review is to focus on phthalate's internal exposure pathways and possible role of human digestion on liver toxicity. In addition, special focus was made on stem cell therapy in reverting liver toxicity. The known entry of higher molecular weight phthalates is through ingestion while inhalation and dermal pathways are for lower molecular weight phthalates. In human body, certain phthalates are digested through phase 1 (hydrolysis, oxidation) and phase 2 (conjugation) metabolic processes. The phthalates that are made bioavailable through digestion enter the blood stream and reach the liver for further detoxification, and these are excreted via urine and/or feces. Bis(2-ethylhexyl) phthalate (DEHP) is a compound well studied involving human metabolism. Liver plays a pivotal role in humans for detoxification of pollutants. Thus, continuous exposure to phthalates in humans may lead to inhibition of liver detoxifying enzymes and may result in liver dysfunction. The potential of stem cell therapy addressed herewith will revert liver dysfunction and lead to restoration of liver function properly.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links