Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Peng Y, Fornara DA, Wu Q, Heděnec P, Yuan J, Yuan C, et al.
    Sci Total Environ, 2023 Jan 20;857(Pt 3):159686.
    PMID: 36302428 DOI: 10.1016/j.scitotenv.2022.159686
    Plant litter decomposition is not only the major source of soil carbon and macronutrients, but also an important process for the biogeochemical cycling of trace elements such as iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu). The concentrations of plant litter trace elements can influence litter decomposition and element cycling across the plant and soil systems. Yet, a global perspective of the patterns and driving factors of trace elements in plant litter is missing. To bridge this knowledge gap, we quantitatively assessed the concentrations of four common trace elements, namely Fe, Mn, Zn, and Cu, of freshly fallen plant litter with 1411 observations extracted from 175 publications across the globe. Results showed that (1) the median of the average concentrations of litter Fe, Mn, Zn, and Cu were 0.200, 0.555, 0.032, and 0.006 g/kg, respectively, across litter types; (2) litter concentrations of Fe, Zn, and Cu were generally stable regardless of variations in multiple biotic and abiotic factors (e.g., plant taxonomy, climate, and soil properties); and (3) litter Mn concentration was more sensitive to environmental conditions and influenced by multiple factors, but mycorrhizal association and soil pH and nitrogen concentration were the most important ones. Overall, our study provides a clear global picture of plant litter Fe, Mn, Zn, and Cu concentrations and their driving factors, which is important for improving our understanding on their biogeochemical cycling along with litter decomposition processes.
    Matched MeSH terms: Zinc/analysis
  2. Ravindiran G, Rajamanickam S, Ramalingam M, Hayder G, Sathaiah BK, Gaddam MKR, et al.
    Environ Res, 2024 Jan 15;241:117551.
    PMID: 37939801 DOI: 10.1016/j.envres.2023.117551
    The present study investigated the sustainable approach for wastewater treatment using waste algal blooms. The current study investigated the removal of toxic metals namely chromium (Cr), nickel (Ni), and zinc (Zn) from aqueous solutions in batch and column studies using biochar produced by the marine algae Ulva reticulata. SEM/EDX, FTIR, and XRD were used to examine the adsorbents' properties and stability. The removal efficiency of toxic metals in batch operations was investigated by varying the parameters, which included pH, biochar dose, initial metal ion concentration, and contact time. Similarly, in the column study, the removal efficiency of heavy metal ions was investigated by varying bed height, flow rate, and initial metal ion concentration. Response Surface Methodology (Central Composite Design (CCD)) was used to confirm the linearity between the observed and estimated values of the adsorption quantity. The packed bed column demonstrated successful removal rates of 90.38% for Cr, 91.23% for Ni, and 89.92% for Zn heavy metals from aqueous solutions, under a controlled environment. The breakthrough analysis also shows that the Thomas and Adams-Bohart models best fit the regression values, allowing prior breakthroughs in the packed bed column to be predicted. Desorption studies were conducted to understand sorption and elution during different regeneration cycles. Adding 0.3 N sulfuric acid over 40 min resulted in the highest desorption rate of the column and adsorbent used for all three metal ions.
    Matched MeSH terms: Zinc/analysis
  3. Yap CK, Pang BH
    Environ Monit Assess, 2011 Dec;183(1-4):23-39.
    PMID: 21340548 DOI: 10.1007/s10661-011-1903-3
    Surface sediments were collected from the north western aquatic area (13 intertidal sites and 5 river drainages) of Peninsular Malaysia, which were suspected to have received different anthropogenic sources. These sites included town areas, ports, fishing village, industrial areas, highway sides, jetties and some relatively unpolluted sites. The present study revealed that 4.79-32.91 μg/g dry weight for Cu, 15.85-61.56 μg/g dry weight for Pb, and 33.6-317.4 μg/g dry weight for Zn based on 13 intertidal surface sediments while those based on 5 river drainage surface sediments were 10.24-119.6 μg/g dry weight for Cu, 26.7-125.7 μg/g dry weight for Pb and 88.7-484.1 μg/g dry weight for Zn. In general, the metal levels in the drainage sediments are higher than in the intertidal sediments, suggesting dilution factor in the intertidal sediment and direct effluent from point sources in the drainage sediment. In particular, the total concentrations of Cu, Pb, and Zn for the sampling site at Kuala Kurau Town exceeded the Effect Range Median values for Cu, Pb, and Zn for assessments of sediment quality values for freshwater sediment as proposed by MacDonald et al. (Arch Environ Contam Toxicol 39:20-31, 2000), thus adverse biological effects would be observed above this level. Assessment using enrichment factor (using Fe as a normalizer) and geoaccumulation index showed that the three metals at Kuala Kurau Town and Juru Industry drainage were evidenced as having more enrichment and mostly due to non-natural sources. However, caution should be exercised that the interpretation can only become valid when the ratios, indices, and sediment quality values are combined. This is due to the fact that not all the established indices are applicable and, to a certain extent, some of them should be further revised and improved to suit a different metal for Malaysian sediment. Undoubtedly, sites near drainages at Kuala Kurau Town and Juru River Basin need greater attention to mitigate the heavy metal pollution in the future.
    Matched MeSH terms: Zinc/analysis*
  4. Babji AS, Embong MS, Woon WW
    Bull Environ Contam Toxicol, 1979 Dec;23(6):830-6.
    PMID: 519067
    Matched MeSH terms: Zinc/analysis
  5. Shuhaimi-Othman M, Nadzifah Y, Nur-Amalina R, Umirah NS
    ScientificWorldJournal, 2012;2012:861576.
    PMID: 22919358 DOI: 10.1100/2012/861576
    Freshwater quality criteria for iron (Fe), lead (Pb), nickel (Ni), and zinc (Zn) were developed with particular reference to aquatic biota in Malaysia, and based on USEPA's guidelines. Acute toxicity tests were performed on eight different freshwater domestic species in Malaysia which were Macrobrachium lanchesteri (prawn), two fish: Poecilia reticulata and Rasbora sumatrana, Melanoides tuberculata (snail), Stenocypris major (ostracod), Chironomus javanus (midge larvae), Nais elinguis (annelid), and Duttaphrynus melanostictus (tadpole) to determine 96 h LC(50) values for Fe, Pb, Ni, and Zn. The final acute value (FAV) for Fe, Pb, Ni, and Zn were 74.5, 17.0, 165, and 304.9 μg L(-1), respectively. Using an estimated acute-to-chronic ratio (ACR) of 8.3, the value for final chronic value (FCV) was derived. Based on FAV and FCV, a criterion maximum concentration (CMC) and a criterion continuous concentration (CCC) for Fe, Pb, Ni, and Zn that are 37.2, 8.5, 82.5, and 152.4 μg L(-1) and 9.0, 2.0, 19.9, and 36.7 μg L(-1), respectively, were derived. The results of this study provide useful data for deriving national or local water quality criteria for Fe, Pb, Ni, and Zn based on aquatic biota in Malaysia. Based on LC(50) values, this study indicated that N. elinguis, M. lanchesteri, N. elinguis, and R. sumatrana were the most sensitive to Fe, Pb, Ni, and Zn, respectively.
    Matched MeSH terms: Zinc/analysis*
  6. Fen YW, Yunus WM, Talib ZA, Yusof NA
    PMID: 25004894 DOI: 10.1016/j.saa.2014.06.081
    In this study, novel active nanolayers in combination with surface plasmon resonance (SPR) system for zinc ion (Zn(2+)) detection has been developed. The gold surface used for the SPR system was modified with the novel developed active nanolayers, i.e. chitosan and chitosan-tetrabutyl thiuram disulfide (chitosan-TBTDS). Both chitosan and chitosan-TBTDS active layers were fabricated on the gold surface by spin coating technique. The system was used to monitor SPR signal for Zn(2+) in aqueous media with and without sensitivity enhancement by TBTDS. For both active nanolayers, the shift of resonance angle is directly proportional to the concentration of Zn(2+) in aqueous media. The higher shift of resonance angle was obtained for chitosan-TBTDS active nanolayer due to a specific binding of TBTDS with Zn(2+). The chitosan-TBTDS active nanolayer enhanced the sensitivity of detection down to 0.1 mg/l and also induced a selective detection towards Zn(2+).
    Matched MeSH terms: Zinc/analysis*
  7. Baskaran G, Masdor NA, Syed MA, Shukor MY
    ScientificWorldJournal, 2013;2013:678356.
    PMID: 24194687 DOI: 10.1155/2013/678356
    Heavy metals pollution has become a great threat to the world. Since instrumental methods are expensive and need skilled technician, a simple and fast method is needed to determine the presence of heavy metals in the environment. In this study, an inhibitive enzyme assay for heavy metals has been developed using crude proteases from Coriandrum sativum. In this assay, casein was used as a substrate and Coomassie dye was used to denote the completion of casein hydrolysis. In the absence of inhibitors, casein was hydrolysed and the solution became brown, while in the presence of metal ions such as Hg²⁺ and Zn²⁺, the hydrolysis of casein was inhibited and the solution remained blue. Both Hg²⁺ and Zn²⁺ exhibited one-phase binding curve with IC₅₀ values of 3.217 mg/L and 0.727 mg/L, respectively. The limits of detection (LOD) and limits of quantitation (LOQ) for Hg were 0.241 and 0.802 mg/L, respectively, while the LOD and LOQ for Zn were 0.228 and 0.761 mg/L, respectively. The enzyme exhibited broad pH ranges for activity. The crude proteases extracted from Coriandrum sativum showed good potential for the development of a rapid, sensitive, and economic inhibitive assay for the biomonitoring of Hg²⁺ and Zn²⁺ in the aquatic environments.
    Matched MeSH terms: Zinc/analysis*
  8. Bashir MJ, Aziz HA, Yusoff MS, Huqe AA, Mohajeri S
    Water Sci Technol, 2010;61(3):641-9.
    PMID: 20150700 DOI: 10.2166/wst.2010.867
    Landfill leachate is one of the major contamination sources. In this study, the ability of synthetic ion exchange resins which carry different mobile ion for removing color, chemical oxygen demand (COD), and ammonia nitrogen (NH(3)-N) from stabilized leachate was investigated. The synthetic resin INDION 225 Na as a cationic exchanger and INDION FFIP MB as an anionic exchanger were used in this study. INDION 225 Na was used in hydrogen form (H(+)) and in sodium form (Na(+)), while INDION FFIP MB resin was used in hydroxide form (OH(-)) and in calcium form (Cl(-)) form. The results indicated better removal of color, COD and NH(3)-N by using INDION 225 Na in H(+) as compared with Na(+) form, while no performance differences were observed by using INDION FFIP MB in OH(-) or Cl(-) form. Applying cationic resin followed by anionic resin achieved 97, 88 and 94, percent removal of color, COD and NH(3)-N. The residual amounts were 160 Pt-Co, 290 mg/L and 110 mg/L of color, COD and NH(3)-N respectively.
    Matched MeSH terms: Zinc/analysis
  9. Shukor MY, Baharom NA, Masdor NA, Abdullah MP, Shamaan NA, Jamal JA, et al.
    J Environ Biol, 2009 Jan;30(1):17-22.
    PMID: 20112858
    A new inhibitive heavy metals determination method using trypsin has been developed. The enzyme was assayed using the casein-Coomassie-dye-binding method. In the absence of inhibitors, casein was hydrolysed to completion and the Coomassie-dye was unable to stain the protein and the solution became brown. In the presence of metals, the hydrolysis of casein was inhibited and the solution remained blue. The bioassay was able to detect zinc and mercury with IC50 (concentration causing 50% inhibition) values of 5.78 and 16.38 mg l(-1) respectively. The limits of detection (LOD), for zinc and mercury were 0.06 mg l(-1) (0.05-0.07, 95% confidence interval) and 1.06 mg l(-1) (1.017-1.102, 95% confidence interval), respectively. The limits of quantitation (LOQ) for zinc and mercury were 0.61 mg l(-1) (0.51-0.74 at a 95% confidence interval) and 1.35 mg l(-1) (1.29-1.40 at a 95% confidence interval), respectively. The IC50 value for zinc was much higher than the IC50 values for papain and Rainbow trout, but was within the range of Daphnia magna and Microtox. The IC50 value for zinc was only lower than those for immobilized urease. Other toxic heavy metals, such as lead, silver arsenic, copper and cadmium, did not inhibit the enzyme at 20 mg l(-1). Using this assay we managed to detect elevated zinc concentrations in several environmental samples. Pesticides, such as carbaryl, flucythrinate, metolachlor glyphosate, diuron, diazinon, endosulfan sulphate, atrazine, coumaphos, imidacloprid, dicamba and paraquat, showed no effect on the activity of trypsin relative to control (One-way ANOVA, F(12,26)= 0.3527, p> 0.05). Of the 17 xenobiotics tested, only (sodium dodecyl sulphate) SDS gave positive interference with 150% activity higher than that of the control at 0.25% (v/v).
    Matched MeSH terms: Zinc/analysis*
  10. Alkarkhi AF, Ismail N, Ahmed A, Easa Am
    Environ Monit Assess, 2009 Jun;153(1-4):179-85.
    PMID: 18504644 DOI: 10.1007/s10661-008-0347-x
    Statistical analysis of heavy metal concentrations in sediment was studied to understand the interrelationship between different parameters and also to identify probable source component in order to explain the pollution status of selected estuaries. Concentrations of heavy metals (Cu, Zn, Cd, Fe, Pb, Cr, Hg and Mn) were analyzed in sediments from Juru and Jejawi Estuaries in Malaysia with ten sampling points of each estuary. The results of multivariate statistical techniques showed that the two regions have different characteristics in terms of heavy metals selected and indicates that each region receives pollution from different sources. The results also showed that Fe, Mn, Cd, Hg, and Cu are responsible for large spatial variations explaining 51.15% of the total variance, whilst Zn and Pb explain only 18.93 of the total variance. This study illustrates the usefulness of multivariate statistical techniques for evaluation and interpretation of large complex data sets to get better information about the heavy metal concentrations and design of monitoring network.
    Matched MeSH terms: Zinc/analysis
  11. Abdullah P, Abdullah SMS, Jaafar O, Mahmud M, Khalik WMAWM
    Mar Pollut Bull, 2015 Dec 15;101(1):378-385.
    PMID: 26476861 DOI: 10.1016/j.marpolbul.2015.10.014
    Characterization of hydrochemistry changes in Johor Straits within 5 years of monitoring works was successfully carried out. Water quality data sets (27 stations and 19 parameters) collected in this area were interpreted subject to multivariate statistical analysis. Cluster analysis grouped all the stations into four clusters ((Dlink/Dmax) × 100<90) and two clusters ((Dlink/Dmax) × 100<80) for site and period similarities. Principal component analysis rendered six significant components (eigenvalue>1) that explained 82.6% of the total variance of the data set. Classification matrix of discriminant analysis assigned 88.9-92.6% and 83.3-100% correctness in spatial and temporal variability, respectively. Times series analysis then confirmed that only four parameters were not significant over time change. Therefore, it is imperative that the environmental impact of reclamation and dredging works, municipal or industrial discharge, marine aquaculture and shipping activities in this area be effectively controlled and managed.
    Matched MeSH terms: Zinc/analysis
  12. Noordin MM, Zhang SS, Rahman SO, Haron J
    Vet Hum Toxicol, 2000 Oct;42(5):276-9.
    PMID: 11003117
    Samples of Brachiaria decumbens collected from 5 farms representing the Peninsular Malaysia were subjected to selected trace mineral and phytate analyses to explain the pathogenesis of B decumbens intoxication. Concentrations of Cu, Zn, Fe and Mo were comparable to other grasses while that of phytate was low. The molar ratios of Cu:Zn, Cu:Mo, and Cu:Fe warrant that Cu deficiency is involved in the toxicity of B decumbens. This might aggravate the development of photosensitization of unpigmented or lightly pigmented areas of affected animals. The Zn:phytate ratio could predispose to Zn deficiency during intoxication.
    Matched MeSH terms: Zinc/analysis
  13. Razak MR, Aris AZ, Zakaria NAC, Wee SY, Ismail NAH
    Ecotoxicol Environ Saf, 2021 Mar 15;211:111905.
    PMID: 33453636 DOI: 10.1016/j.ecoenv.2021.111905
    The constant increase of heavy metals into the aqueous environment has become a contemporary global issue of concern to government authorities and the public. The study assesses the concentration, distribution, and risk assessment of heavy metals in freshwater from the Linggi River, Negeri Sembilan, Malaysia. Species sensitivity distribution (SSD) was utilised to calculate the cumulative probability distribution of toxicity from heavy metals. The aquatic organism's toxicity data obtained from the ECOTOXicology knowledgebase (ECOTOX) was used to estimate the predictive non-effects concentration (PNEC). The decreasing sequence of hazardous concentration (HC5) was manganese > aluminium > copper > lead > arsenic > cadmium > nickel > zinc > selenium, respectively. The highest heavy metal concentration was iron with a mean value of 45.77 μg L-1, followed by manganese (14.41 μg L-1) and aluminium (11.72 μg L-1). The mean heavy metal pollution index (HPI) value in this study is 11.52, implying low-level heavy metal pollutions in Linggi River. The risk quotient (RQ) approaches were applied to assess the potential risk of heavy metals. The RQ shows a medium risk of aluminium (RQm = 0.1125) and zinc (RQm = 0.1262); a low risk of arsenic (RQm = 0.0122) and manganese (RQm = 0.0687); and a negligible risk of cadmium (RQm = 0.0085), copper (RQm = 0.0054), nickel (RQm = 0.0054), lead (RQm = 0.0016) and selenium (RQm = 0.0012). The output of this study produces comprehensive pollution risk, thus provides insights for the legislators regarding exposure management and mitigation.
    Matched MeSH terms: Zinc/analysis
  14. Haris H, Looi LJ, Aris AZ, Mokhtar NF, Ayob NAA, Yusoff FM, et al.
    Environ Geochem Health, 2017 Dec;39(6):1259-1271.
    PMID: 28484873 DOI: 10.1007/s10653-017-9971-0
    The aim of the present study was to appraise the levels of heavy metal contamination (Zn and Pb) in sediment of the Langat River (Selangor, Malaysia). Samples were collected randomly from 15 sampling stations located along the Langat River. The parameters measured were pH, redox potential, salinity, electrical conductivity, loss of ignition, cation exchanges capacity (Na, Mg, Ca, K), and metal ions (Zn and Pb). The geo-accumulation index (I geo) and contamination factor (C f) were applied to determine and classify the magnitude of heavy metal pollution in this urban river sediment. Results revealed that the I geo of Pb indicated unpolluted to moderately polluted sediment at most of the sampling stations, whereas Zn was considered to be within background concentration. The I geo results were refined by the C f values, which showed Pb with very high C f at 12 stations. Zinc, on the other hand, had low to moderate C f values. These findings indicated that the sediment of the Langat River is severely polluted with Pb. The Zn concentration at most sampling points was well below most sediment quality guidelines. However, 40% of the sampling points were found to have a Pb concentration higher than the consensus-based probable effect concentration of 128 mg/kg (concentrations above this value are likely to cause harmful effects). This result not only highlights the severity of Pb pollution in the sediment of the Langat River, but also the potential risk it poses to the environment.
    Matched MeSH terms: Zinc/analysis*
  15. Idrus FA, Basri MM, Rahim KAA, Rahim NSA, Chong MD
    Bull Environ Contam Toxicol, 2018 Mar;100(3):350-355.
    PMID: 29344698 DOI: 10.1007/s00128-018-2270-3
    This study analyzed the levels of cadmium (Cd), copper (Cu), and zinc (Zn) by the flame atomic absorption spectrophotometer (FAAS), in the muscle tissues, exoskeletons, and gills from freshwater prawn (Macrobrachium rosenbergii) (n = 20) harvested from natural habitat in Kerang River, Malaysia on 25th November 2015. Significant increase of the metals level in muscle tissue and gill (r > 0.70, p 
    Matched MeSH terms: Zinc/analysis*
  16. Meena RAA, Sathishkumar P, Ameen F, Yusoff ARM, Gu FL
    Environ Sci Pollut Res Int, 2018 Feb;25(5):4134-4148.
    PMID: 29247419 DOI: 10.1007/s11356-017-0966-2
    With growing population and urbanization, there is an increasing exploitation of natural resources, and this often results to environmental pollution. In this review, the levels of heavy metal in lentic compartments (water, sediment, fishes, and aquatic plants) over the past two decades (1997-2017) have been summarized to evaluate the current pollution status of this ecosystem. In all the compartments, the heavy metals dominated are zinc followed by iron. The major reason could be area mineralogy and lithogenic sources. Enormous quantity of metals like iron in estuarine sediment is a very natural incident due to the permanently reducing condition of organic substances. Contamination of cadmium, lead, and chromium was closely associated with anthropogenic origin. In addition, surrounding land use and atmospheric deposition could have been responsible for substantial pollution. The accumulation of heavy metals in fishes and aquatic plants is the result of time-dependent deposition in lentic ecosystems. Moreover, various potential risk assessment methods for heavy metals were discussed. This review concludes that natural phenomena dominate the accumulation of essential heavy metals in lentic ecosystems compared to anthropogenic sources. Amongst other recent reviews on heavy metals from other parts of the world, the present review is executed in such a way that it explains the presence of heavy metals not only in water environment, but also in the whole of the lentic system comprising sediment, fishes, and aquatic plants.
    Matched MeSH terms: Zinc/analysis
  17. Ee-Ling O, Mustaffa NI, Amil N, Khan MF, Latif MT
    Bull Environ Contam Toxicol, 2015 Apr;94(4):537-42.
    PMID: 25652682 DOI: 10.1007/s00128-015-1477-9
    This study determined the source contribution of PM2.5 (particulate matter <2.5 μm) in air at three locations on the Malaysian Peninsula. PM2.5 samples were collected using a high volume sampler equipped with quartz filters. Ion chromatography was used to determine the ionic composition of the samples and inductively coupled plasma mass spectrometry was used to determine the concentrations of heavy metals. Principal component analysis with multilinear regressions were used to identify the possible sources of PM2.5. The range of PM2.5 was between 10 ± 3 and 30 ± 7 µg m(-3). Sulfate (SO4 (2-)) was the major ionic compound detected and zinc was found to dominate the heavy metals. Source apportionment analysis revealed that motor vehicle and soil dust dominated the composition of PM2.5 in the urban area. Domestic waste combustion dominated in the suburban area, while biomass burning dominated in the rural area.
    Matched MeSH terms: Zinc/analysis
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links