Displaying all 7 publications

Abstract:
Sort:
  1. Budi Aslinie Md Sabri, Nur Hidayah Mohd Radzi, Fatimatuz Zahira Abdul Hadi, Ikmal HishamIsmai
    MyJurnal
    Objective: To evaluate feasibility of hand gloves as a rubber dam isolation alternative, in respect of physical properties. Materials and Methods: A randomized controlled trial study design was used. Three types of gloves were tested with two types of a rubber dam used as the control group. Cut-out pattern of dumb-bell shapes were made from 35 samples for each type of groups and tensile strength were tested using Universal Testing Machine and the Trapezium X software. All tests for physical requirements were performed in accord-ance with American Society for Testing and Materials D412, Standard Test Methods for Vulcanized Rubber and Thermoplastic Rubbers and Thermoplastic Elastomers-Tension. Findings were analyzed by analysis of vari-ance (ANOVA) and differences were compared using a Tukey-Kramer interval calculated at the 0.05 signifi-cance level. Results: Heavy gauge rubber dam has the highest Mean (calculated at the 0.05 significance level) except for maximum stress calculated at entire area. Medium-gauge rubber dam has significantly higher tensile strength (44.5075 N/mm2) when compared to heavy-gauge rubber dam (35.7787 N/mm2) although it was 0.09mm thinner. Discovery 2020 Powder Free Latex Examination Gloves with tensile strength value of 28.5922 N/mm2 (±3.27366) is more than the minimum requirement specified by American Federal Specification ZZ-R90B Rubber Dam (Dental, 1985) (4000 pounds per square inch or 27.6 N/mm2). For all variable tested, all groups are significantly different from each other. The mean square between the groups was quite large. Conclusion: This study shows that there are significant differences between the physical strength of latex gloves when com-pared to rubber dam. However, the comparison between thickness and tensile strength among various rubber dam, did not correspond proportionately. Only one type of rubber gloves met the minimum requirement but that is just one aspect. In view of these mixed results, more research is needed before we can conclude that it is feasable that we use hand gloves to replace rubber dam.
    Matched MeSH terms: Rubber Dams
  2. Musa, S., Awang, H.
    Ann Dent, 1996;3(1):-.
    MyJurnal
    A case of mucosal burn during the placement of fissure sealant on the first permanent molars of a 9-year-old Malay boy is presented. The erythematous lesion with accompanying burning sensation appeared a few minutes after the etching liquid, containing 37% by weight phosphoric acid, had accidentally come into contact with the buccal mucosa on the right side of the angle of the mouth. The mucosa showed complete healing after one week. The use of rubber dam for tooth isolation while doing fissure sealant is essential to avoid accidental contact of potentially caustic chemicals, such as the phosphoric acid etchant, with the oral mucosa as it can result in mucosal burns.
    Matched MeSH terms: Rubber Dams
  3. Abdullah, M., Che Ab Aziz, Z.A., Roslan Saub, Murat, N., Sulaiman, E., Hashim, N., et al.
    Ann Dent, 2009;16(1):9-14.
    MyJurnal
    The objectives of this study were to assess the practice of molar root canal treatment (RCT) among general dental practitioners (GDPs), confidence level of GDPs in performing molar RCT and to identify factors that influence their confidence in managing molar RCI. One hundred questionnaires were distributed to GDPs in Kuala Lumpur and Selangor. Fifty questionnaires were delivered by mail and the remaining fifty were hand-delivered. All data was coded and verified. Fiftysix OOPs rcsponded to the questionnaires. Only fortyfive questionnaires were accepted (n=45) as eleven OOPs had never performed molar RCI. Most of the OOPs followed the standard quality guidelines while performing molar RCT except for vitality testing (36.4%) and rubber dam usage (27.3%). In this study, 100% of the GDPs were confident in making diagnosis of perinidicular diseases and 95.4% were confident in performing molar RCT from history taking until obturation. Patients' tolerance and availability of instruments and materials (97.7%) were two factors that most influence the GDPs' confidence level. The. least influcncing factor was undergraduate training (78.1 %). Attending seminars and lectures on endodontic, large number of molar teeth treated for ReT, patLents' affordability to pay for RCT and postgraduate training also influencc GDPs' confidence to a certain degree. From this study, it can be concluded that majority of OOPs complied standard quality guidelines except for vitality testing and rubber dam usage. Most of them were confident in performing molar RCT and were greatly influenced by the availability or"instruments and materials in their clinic and patients' tolerance in receiving molar RCI.
    Matched MeSH terms: Rubber Dams
  4. Che Ab Aziz, Z.A., Abdullah, M., Vello, C.D.S., Thangavelu, K.
    Ann Dent, 2006;13(1):12-17.
    MyJurnal
    Background: Majority of root canal treatment in Malaysia was provided by general dental practitioner. The purpose of this study was to evaluate the knowledge and practice (canal’s preparation, use of materials) by them. Methods: A questionnaire was structured and distributed to 120 registered general dental practitioners in selected areas in Perak, Johor and Klang Valley regarding the provision of root canal therapy in their practices. The questionnaires were hand delivered and collected after 1 to 2 weeks. Results: Reply rate was 95% (n=114). The result demonstrated that 62% respondents indicated that they performed the root canal therapy (RCT) themselves. Out of these only 26% included molars in the treatment. Three quarters of them (77%) used step-back technique and 54% used stainless steel instruments to prepare the canals. The majority of the respondents (69%) used calcium hydroxide as intracanal medicaments. Only 30% used rubber dam for isolation whereas the rest used cotton rolls. The numbers of routine radiographs taken were two for anterior teeth and three for molar. Half of the respondents indicated that they usually completed the RCT for the anterior tooth within two visits whereas three visits were needed for the molar tooth. The results were analyzed descriptively. Conclusions: This study indicates that most of the general dental practitioners’ do not comply with quality standards guidelines such as use of rubber dam as isolation. Cotton roll was the most popular isolation method. In spite of this, most of the respondents tend to update their knowledge and practices with current techniques and materials.
    Matched MeSH terms: Rubber Dams
  5. Kunaparaju K, Shetty K, Jathanna V, Nath K, M R
    Patient Saf Surg, 2021 Jan 05;15(1):1.
    PMID: 33402200 DOI: 10.1186/s13037-020-00273-3
    BACKGROUND: Accidental ingestion of a dental bur during the dental procedure is a rare, but a potentially serious complication. Early recognition and foreign body retrieval is essential to prevent adverse patient outcomes.

    CASE PRESENTATION: A 76-year old male patient, presented to the department with a chief complaint of sensitivity in his upper right back tooth due to attrition. After assessing the pulp status, root canal therapy was planned for the tooth. During the procedure, it was noticed that the dental bur slipped out of the hand piece and the patient had accidentally ingested it. The patient was conscious and had no trouble while breathing at the time of ingestion of the bur although he had mild cough which lasted for a short duration. The dental procedure was aborted immediately and the patient was taken to the hospital for emergency care. The presence and location of the dental bur was confirmed using chest and abdominal x-rays and it was subsequently retrieved by esophagogastroduodenoscopy (EGD) procedure under general anaesthesia on the same day as a part of the emergency procedure. The analysis of this case reaffirms the importance of the use of physical barriers such as rubber dams and gauze screens as precautionary measures to prevent such incidents from occurring.

    CONCLUSION: Ingestion of instruments are uncertain and hazardous complications to encounter during a dental procedure. The need for physical barrier like rubber dam is mandatory for all dental procedures. However, the dentist should be well trained to handle such medical emergencies and reassure the patient by taking them into confidence. Each incident encountered should be thoroughly documented to supply adequate guidance for treatment aspects. This would fulfil the professional responsibilities of the dentist/ clinician and may help avoid possible legal and ethical issues. This case report emphasizes on the need for the usage of physical barriers during dental procedures in order to avoid medical emergencies.

    Matched MeSH terms: Rubber Dams
  6. Che Ab Aziz, Z.A.
    Ann Dent, 2008;15(2):67-70.
    MyJurnal
    Aim: To manufacture a clinical simulation apparatus for the undergraduates' endodontic radiography teaching Objectives: • To provide a model for teaching of parallax method using Kelly's forcep • To provide a model for undergraduates to practice radiographic localization employing parallax method. • To allow students to practice taking radiographs in a way that simulates the clinical situations with a good diagnostic quality Methods: Impressions of a dentate arch (maxillary and mandibullary) were used to form a stone cast. A section of the cast, in the area where the natural teeth were to be placed, is sectioned and removed. Three maxillary extracted teeth (canine, first and second premolar) were selected and mounted with acrylic resin at the sectioned area. The resin was cured in a light box. The arches were mounted in a phantom head with a placement of rubber cheek. The first premolar was isolated with rubber dam. The intraoral holder (Kelly's forcep) was attached to a robotic arm. The students were taught the correct angulations of the x-ray cone for the paralleling technique and parallax method using Kelly's forcep during root canal treatment. Results: All students managed to complete the exercise and were considered competent when they produced acceptable quality of radiographs. Conclusion: The model described was improvised from a model that has been used during the past 2 years for undergraduates' endodontic courses. It has been well accepted as it simulates the clinical situation more closely than was possible previously.
    Matched MeSH terms: Rubber Dams
  7. Kumbargere Nagraj S, Eachempati P, Paisi M, Nasser M, Sivaramakrishnan G, Verbeek JH
    Cochrane Database Syst Rev, 2020 Oct 12;10(10):CD013686.
    PMID: 33047816 DOI: 10.1002/14651858.CD013686.pub2
    BACKGROUND: Many dental procedures produce aerosols (droplets, droplet nuclei and splatter) that harbour various pathogenic micro-organisms and may pose a risk for the spread of infections between dentist and patient. The COVID-19 pandemic has led to greater concern about this risk.

    OBJECTIVES: To assess the effectiveness of methods used during dental treatment procedures to minimize aerosol production and reduce or neutralize contamination in aerosols.

    SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases on 17 September 2020: Cochrane Oral Health's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (in the Cochrane Library, 2020, Issue 8), MEDLINE Ovid (from 1946); Embase Ovid (from 1980); the WHO COVID-19 Global literature on coronavirus disease; the US National Institutes of Health Trials Registry (ClinicalTrials.gov); and the Cochrane COVID-19 Study Register. We placed no restrictions on the language or date of publication.

    SELECTION CRITERIA: We included randomized controlled trials (RCTs) and controlled clinical trials (CCTs) on aerosol-generating procedures (AGPs) performed by dental healthcare providers that evaluated methods to reduce contaminated aerosols in dental clinics (excluding preprocedural mouthrinses). The primary outcomes were incidence of infection in dental staff or patients, and reduction in volume and level of contaminated aerosols in the operative environment. The secondary outcomes were cost, accessibility and feasibility.

    DATA COLLECTION AND ANALYSIS: Two review authors screened search results, extracted data from the included studies, assessed the risk of bias in the studies, and judged the certainty of the available evidence. We used mean differences (MDs) and 95% confidence intervals (CIs) as the effect estimate for continuous outcomes, and random-effects meta-analysis to combine data. We assessed heterogeneity.

    MAIN RESULTS: We included 16 studies with 425 participants aged 5 to 69 years. Eight studies had high risk of bias; eight had unclear risk of bias. No studies measured infection. All studies measured bacterial contamination using the surrogate outcome of colony-forming units (CFU). Two studies measured contamination per volume of air sampled at different distances from the patient's mouth, and 14 studies sampled particles on agar plates at specific distances from the patient's mouth. The results presented below should be interpreted with caution as the evidence is very low certainty due to heterogeneity, risk of bias, small sample sizes and wide confidence intervals. Moreover, we do not know the 'minimal clinically important difference' in CFU. High-volume evacuator Use of a high-volume evacuator (HVE) may reduce bacterial contamination in aerosols less than one foot (~ 30 cm) from a patient's mouth (MD -47.41, 95% CI -92.76 to -2.06; 3 RCTs, 122 participants (two studies had split-mouth design); very high heterogeneity I² = 95%), but not at longer distances (MD -1.00, -2.56 to 0.56; 1 RCT, 80 participants). One split-mouth RCT (six participants) found that HVE may not be more effective than conventional dental suction (saliva ejector or low-volume evacuator) at 40 cm (MD CFU -2.30, 95% CI -5.32 to 0.72) or 150 cm (MD -2.20, 95% CI -14.01 to 9.61). Dental isolation combination system One RCT (50 participants) found that there may be no difference in CFU between a combination system (Isolite) and a saliva ejector (low-volume evacuator) during AGPs (MD -0.31, 95% CI -0.82 to 0.20) or after AGPs (MD -0.35, -0.99 to 0.29). However, an 'n of 1' design study showed that the combination system may reduce CFU compared with rubber dam plus HVE (MD -125.20, 95% CI -174.02 to -76.38) or HVE (MD -109.30, 95% CI -153.01 to -65.59). Rubber dam One split-mouth RCT (10 participants) receiving dental treatment, found that there may be a reduction in CFU with rubber dam at one-metre (MD -16.20, 95% CI -19.36 to -13.04) and two-metre distance (MD -11.70, 95% CI -15.82 to -7.58). One RCT of 47 dental students found use of rubber dam may make no difference in CFU at the forehead (MD 0.98, 95% CI -0.73 to 2.70) and occipital region of the operator (MD 0.77, 95% CI -0.46 to 2.00). One split-mouth RCT (21 participants) found that rubber dam plus HVE may reduce CFU more than cotton roll plus HVE on the patient's chest (MD -251.00, 95% CI -267.95 to -234.05) and dental unit light (MD -12.70, 95% CI -12.85 to -12.55). Air cleaning systems One split-mouth CCT (two participants) used a local stand-alone air cleaning system (ACS), which may reduce aerosol contamination during cavity preparation (MD -66.70 CFU, 95% CI -120.15 to -13.25 per cubic metre) or ultrasonic scaling (MD -32.40, 95% CI - 51.55 to -13.25). Another CCT (50 participants) found that laminar flow in the dental clinic combined with a HEPA filter may reduce contamination approximately 76 cm from the floor (MD -483.56 CFU, 95% CI -550.02 to -417.10 per cubic feet per minute per patient) and 20 cm to 30 cm from the patient's mouth (MD -319.14 CFU, 95% CI - 385.60 to -252.68). Disinfectants ‒ antimicrobial coolants Two RCTs evaluated use of antimicrobial coolants during ultrasonic scaling. Compared with distilled water, coolant containing chlorhexidine (CHX), cinnamon extract coolant or povidone iodine may reduce CFU: CHX (MD -124.00, 95% CI -135.78 to -112.22; 20 participants), povidone iodine (MD -656.45, 95% CI -672.74 to -640.16; 40 participants), cinnamon (MD -644.55, 95% CI -668.70 to -620.40; 40 participants). CHX coolant may reduce CFU more than povidone iodine (MD -59.30, 95% CI -64.16 to -54.44; 20 participants), but not more than cinnamon extract (MD -11.90, 95% CI -35.88 to 12.08; 40 participants).

    AUTHORS' CONCLUSIONS: We found no studies that evaluated disease transmission via aerosols in a dental setting; and no evidence about viral contamination in aerosols. All of the included studies measured bacterial contamination using colony-forming units. There appeared to be some benefit from the interventions evaluated but the available evidence is very low certainty so we are unable to draw reliable conclusions. We did not find any studies on methods such as ventilation, ionization, ozonisation, UV light and fogging. Studies are needed that measure contamination in aerosols, size distribution of aerosols and infection transmission risk for respiratory diseases such as COVID-19 in dental patients and staff.

    Matched MeSH terms: Rubber Dams
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links