Displaying all 4 publications

Abstract:
Sort:
  1. Yong HS
    Comp. Biochem. Physiol., B, 1990;97(1):119-21.
    PMID: 2147641
    1. Population samples of Bactrocera albistrigata from Peninsular Malaysia were analyzed for 12 to 14 gene-enzyme systems comprising 15-18 loci. 2. Three loci, aMDH, PGD and PGM, were polymorphic. 3. Anodal malate dehydrogenase and phosphogluconate dehydrogenase were represented by two alleles each, while phosphoglucomutase was represented by three alleles. 4. Phosphoglucomutase had a higher heterozygosity than anodal malate dehydrogenase and phosphogluconate dehydrogenase. 5. B. albistrigata was characterized by low genetic variability, as measured by the proportion of polymorphic loci and heterozygosity.
    Matched MeSH terms: Phosphogluconate Dehydrogenase/genetics*
  2. Ng HF, Ngeow YF
    Pathog Dis, 2020 11 11;78(8).
    PMID: 32945880 DOI: 10.1093/femspd/ftaa055
    The subspecies classification of Mycobacteroides abscessus complex into M. abscessus, M. massiliense and M. bolletii requires the amplification and sequencing of multiple genes. The objective of this study was to evaluate the possibility of subspecies classification using a single PCR target. An in silico study was performed to classify 1613 strains deposited in a public database using 9 genes (partial gene sequences of hsp65, rpoB, sodA, argH, cya, glpK, gnd, and murC, and the full gene sequence of MAB_3542c). We found the housekeeping gene gnd to be able to classify the M. abscessus subspecies with high accuracy (99.94%). A single-gene PCR approach based on gnd would be a suitable replacement for the more expensive, labor-intensive and time-consuming multi-gene PCR analysis currently in use for the subspecies identification of M. abscessus.
    Matched MeSH terms: Phosphogluconate Dehydrogenase/genetics*
  3. Yip MY, Dhaliwal SS, Yong HS
    Hum. Hered., 1979;29(1):5-9.
    PMID: 761922
    Four red cell enzyme systems were studied in Malaysian mothers and their newborn belonging to three racial groups, the Malays, Indians and Chinese. No significant heterogeneity was observed in the distribution of phosphoglucomutase (PGM1), adenosine deaminase (ADA), 6-phosphogluconate dehydrogenase (6PGD) and acid phosphatase (AP) phenotypes between mothers and their newborn of the three groups. Pooled mother and child acid phosphatase data show a significant heterogeneity between the Malays and Chinese, and between the Malays and Indians. This is comparable to previous studies conducted. For the placental phosphoglucomutase (PGM3) system, a significant heterogeneity was observed between the Chinese and Malays only. No significant heterogeneity was detected in the distribution of PGM1, ADA and 6PGD phenotypes among Malays, Chinese and Indians.
    Matched MeSH terms: Phosphogluconate Dehydrogenase/genetics*
  4. Saha N, Mak JW, Tay JS, Liu Y, Tan JA, Low PS, et al.
    Hum Biol, 1995 Feb;67(1):37-57.
    PMID: 7721278
    A population genetic study was undertaken to provide gene frequency data on the additional blood genetic markers in the Semai and to estimate the genetic relations between the Semai and their neighboring and linguistically related populations by genetic distance and principal components analyses. Altogether 10 polymorphic and 7 monomorphic blood genetic markers (plasma proteins and red cell enzymes) were studied in a group of 349 Senoi Semai from 11 aboriginal settlements (villages) in the Pahang State of western Malaysia. Both the red cell glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (PGD) loci reveal the presence of polymorphic frequencies of a nondeficient slow allele at the G6PD locus and a fast allele at the PGD locus. The Semai are characterized by high prevalences of ahaptoglobinemia and G6PD deficiency, high frequencies of HP*1, HB*E, RH*R1, ACP*C, GLO1*1, PGM1*2+, and GC*1F and corresponding low frequencies of ABO*A, HbCoSp, HB*B0, TF*D, CHI, and GC*2. Genetic distance analyses by both cluster and principal components models were performed between the Semai and 14 other populations (Malay; Javanese; Khmer; Veddah; Tamils of Malaysia, Sri Lanka, and India; Sinhalese; Oraon; Toda and Irula of India; Chinese; Japanese; Koreans) on the basis of 30 alleles at 7 polymorphic loci. A more detailed analysis using 53 alleles at 13 polymorphic loci with 10 populations was carried out. Both analyses give genetic evidence of a close relationship between the Semai and the Khmer of Cambodia. Furthermore, the Semai are more closely related to the Javanese than to their close neighbors--the Malay, Chinese, and Tamil Indians. There is no evidence for close genetic relationship between the Semai and the Veddah or other Indian tribes. The evidence fits well with the linguistic relationship of the Semai with the Mon-Khmer branch of the Austro-Asiatic language family.
    Matched MeSH terms: Phosphogluconate Dehydrogenase/genetics*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links