Displaying publications 1 - 20 of 55 in total

Abstract:
Sort:
  1. Taha BA, Ali N, Sapiee NM, Fadhel MM, Mat Yeh RM, Bachok NN, et al.
    Biosensors (Basel), 2021 Jul 27;11(8).
    PMID: 34436055 DOI: 10.3390/bios11080253
    Understanding environmental information is necessary for functions correlated with human activities to improve healthcare quality and reduce ecological risk. Tapered optical fibers reduce some limitations of such devices and can be considerably more responsive to fluorescence and absorption properties changes. Data have been collected from reliable sources such as Science Direct, IEEE Xplore, Scopus, Web of Science, PubMed, and Google Scholar. In this narrative review, we have summarized and analyzed eight classes of tapered-fiber forms: fiber Bragg grating (FBG), long-period fiber grating (LPFG), Mach-Zehnder interferometer (MZI), photonic crystals fiber (PCF), surface plasmonic resonance (SPR), multi-taper devices, fiber loop ring-down technology, and optical tweezers. We evaluated many issues to make an informed judgement about the viability of employing the best of these methods in optical sensors. The analysis of performance for tapered optical fibers depends on four mean parameters: taper length, sensitivity, wavelength scale, and waist diameter. Finally, we assess the most potent strategy that has the potential for medical and environmental applications.
    Matched MeSH terms: Optical Fibers*
  2. Shaari, S., Ehsan, A.A., Abd-Rahman, M.K.
    ASM Science Journal, 2008;2(2):153-161.
    MyJurnal
    An optical code generating device for a portable optical access-card system was constructed using the plastic optical fibre (POF) waveguide coupler. The newly constructed device provided output light intensities which were used as optical codes in a portable optical access-card system. The construction of a basic 1 × 2 waveguide design combined two major components which were the asymmetric Y-junction splitter and the linear taper. A hollow waveguide structure was utilized as it provided more flexibility in guiding light rays. A basic 1 × 2 waveguide coupler was designed using the CAD tool and then the ray was traced using the non-sequential ray tracing tool. A linear relationship between the tap-off ratio and the waveguide tap-width enabled a higher-level hollow waveguide coupler to be designed using the simple cascading technique. Construction of a 1 × 4 and higher level waveguide coupler was easily realized using the basic 1 × 2 waveguide coupler design together with a simple cascading technique.
    Matched MeSH terms: Optical Fibers
  3. Shaddad RQ, Mohammad AB, Al-Gailani SA, Al-Hetar AM
    ScientificWorldJournal, 2014;2014:170471.
    PMID: 24772009 DOI: 10.1155/2014/170471
    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.
    Matched MeSH terms: Optical Fibers*
  4. Hashim S, Al-Ahbabi S, Bradley DA, Webb M, Jeynes C, Ramli AT, et al.
    Appl Radiat Isot, 2009 Mar;67(3):423-7.
    PMID: 18693024 DOI: 10.1016/j.apradiso.2008.06.030
    Modern linear accelerators, the predominant teletherapy machine in major radiotherapy centres worldwide, provide multiple electron and photon beam energies. To obtain reasonable treatment times, intense electron beam currents are achievable. In association with this capability, there is considerable demand to validate patient dose using systems of dosimetry offering characteristics that include good spatial resolution, high precision and accuracy. Present interest is in the thermoluminescence response and dosimetric utility of commercially available doped optical fibres. The important parameter for obtaining the highest TL yield during this study is to know the dopant concentration of the SiO2 fibre because during the production of the optical fibres, the dopants tend to diffuse. To achieve this aim, proton-induced X-ray emission (PIXE), which has no depth resolution but can unambiguously identify elements and analyse for trace elements with detection limits approaching microg/g, was used. For Al-doped fibres, the dopant concentration in the range 0.98-2.93 mol% have been estimated, with equivalent range for Ge-doped fibres being 0.53-0.71 mol%. In making central-axis irradiation measurements a solid water phantom was used. For 6-MV photons and electron energies in the range 6, 9 and 12 MeV, a source to surface distance of 100 cm was used, with a dose rate of 400 cGy/min for photons and electrons. The TL measurements show a linear dose-response over the delivered range of absorbed dose from 1 to 4 Gy. Fading was found to be minimal, less than 10% over five days subsequent to irradiation. The minimum detectable dose for 6-MV photons was found to be 4, 30 and 900 microGy for TLD-100 chips, Ge- and Al-doped fibres, respectively. For 6-, 9- and 12-MeV electron energies, the minimum detectable dose were in the range 3-5, 30-50 and 800-1400 microGy for TLD-100 chip, Ge-doped and Al-doped fibres, respectively.
    Matched MeSH terms: Optical Fibers*
  5. Sahini MH, Hossain I, Wagiran H, Saeed MA, Ali H
    Appl Radiat Isot, 2014 Sep;92:18-21.
    PMID: 24973463 DOI: 10.1016/j.apradiso.2014.05.024
    Characteristics of the thermoluminescence (TL) responses of Yb- and Yb-Tb-doped optical fibers irradiated with 6MV photons are reported. The concentration of Yb in the Yb-doped optical fiber was 0.26mol%; the concentrations of Yb and Tb in the Yb-Tb-doped optical fiber were 0.62 and 0.2mol%, respectively. The TL dose responses are linear in the dose range 0.5-4Gy. The radiation sensitivity of the Yb-Tb material is almost two orders of magnitude higher than the sensitivity of the material doped with Yb alone.
    Matched MeSH terms: Optical Fibers
  6. Shee YG, Al-Mansoori MH, Ismail A, Hitam S, Mahdi MA
    Appl Opt, 2010 Jul 10;49(20):3956-9.
    PMID: 20648173 DOI: 10.1364/AO.49.003956
    We demonstrate a simple configuration for generating a double Brillouin frequency shift through the circulation of an odd-order Brillouin Stokes signal. It is operated based on cascaded Brillouin scattering in single-mode optical fibers that behave as the Brillouin gain media. A four-port circulator is incorporated into the setup to circulate the odd-order Brillouin Stokes signal in the fiber. It thus initiates a higher order Brillouin Stokes signal, which is double Brillouin frequency downshifted from the input signal. For the 5 km long fiber, the Brillouin pump power at 23 mW gives a clean output spectrum with 30 dB sideband suppression ratio. The output signal is 0.174 nm or approximately 21.7 GHz downshifted from the input signal.
    Matched MeSH terms: Optical Fibers
  7. Bakar AA, Mahdi MA, Al-Mansoori MH, Shaari S, Zamzuri AK
    Appl Opt, 2009 Apr 20;48(12):2340-3.
    PMID: 19381186
    We demonstrate an opto-optical gain-clamped L-band erbium-doped fiber amplifier by manipulating the C-band lasing wavelength as the control signal. The L-band gain-clamped value is achieved by tuning the control laser in the C-band wavelength range that propagates in the opposite direction to the L-band signal. Within the wavelength range of 1538 nm and 1560 nm, the L-band gain decreases linearly with the increment of the C-band lasing wavelength. The L-band gain dynamic range decreases with the increment of the cavity loss. By combining two different levels of cavity loss, the gain dynamic range of 10 dB from 11 dB to 21 dB is achieved with an average noise figure of less than 5.9 dB. The whole gain spectrum of the L-band can be used for multiple-channel amplification because the laser is created outside its signal band.
    Matched MeSH terms: Optical Fibers
  8. Rahim RA, Chen LL, San CK, Rahiman MH, Fea PJ
    Sensors (Basel), 2009;9(11):8562-78.
    PMID: 22291523 DOI: 10.3390/s91108562
    This paper explains in detail the solution to the forward and inverse problem faced in this research. In the forward problem section, the projection geometry and the sensor modelling are discussed. The dimensions, distributions and arrangements of the optical fibre sensors are determined based on the real hardware constructed and these are explained in the projection geometry section. The general idea in sensor modelling is to simulate an artificial environment, but with similar system properties, to predict the actual sensor values for various flow models in the hardware system. The sensitivity maps produced from the solution of the forward problems are important in reconstructing the tomographic image.
    Matched MeSH terms: Optical Fibers
  9. Amiri IS, Alavi SE, Soltanian MR, Fisal N, Supa'at AS, Ahmad H
    Sci Rep, 2015;5:11897.
    PMID: 26153536 DOI: 10.1038/srep11897
    This paper describes a novel technique to increase the numbers of access points (APs) in a wavelength division multiplexed-passive optical network (WDM-PON) integrated in a 100 GHz radio-over-fiber (RoF). Eight multi-carriers separated by 25 GHz intervals were generated in the range of 193.025 to 193.200 THz using a microring resonator (MRR) system incorporating an add-drop filter system. All optically generated multi-carriers were utilized in an integrated system of WDM-PON-RoF for transmission of four 43.6 Gb/sec orthogonal frequency division multiplexing (OFDM) signals. Results showed that an acceptable BER variation for different path lengths up to 25 km was achievable for all four access points and thus the transmission of four OFDM channels is feasible for a 25 km standard single mode fiber (SSMF) path length.
    Matched MeSH terms: Optical Fibers
  10. Hazura Haroon, Abdul Aziz Abu Mansor, Hanim Abdul Razak, Siti Khadijah Idris, Anis Suhaila Mohd Zain, Fauziyah Salehuddin
    MyJurnal
    An investigation of bending loss characteristics of a Polymer Optical Fiber is presented experimentally. Loss of optical power in an optical fiber due to bending has been investigated for a wavelength of 650 nm. Variations of bending loss with different lengths have been measured, with a number of radii of curvature. Bending Loss equations for short length POF is proposed, which shows the dependence of bending loss on the curvature radii. The equations can be an initial reference or aid in predicting the loss contributes by the polymer optical fiber.
    Matched MeSH terms: Optical Fibers
  11. Hazura Haroon, Siti Sarah Khalid
    MyJurnal
    This paper provides a qualitative overview of different Optical Fiber Sensors (OFS),
    which play important role in the field of sensors due to their excellent
    characteristics, spontaneous response and easy handling system. The current
    state of the art of optical fiber technology is reviewed, namely based on its main
    characteristics and sensing advantages. In addition, the working principle of OFS
    and their applications are discussed, particularly for sensor employment.
    Matched MeSH terms: Optical Fibers
  12. Wan Maisarah Mukhtar, Nur Auni Marzuki, Affa Rozana Abdul Rashid
    MyJurnal
    This paper reports the effect of microbending losses in single mode optical fiber
    for pressure sensing system application. Several types of periodical corrugated
    plates were fabricated, namely cylindrical-structured surface (Plate A) and
    rectangular-structured surface (Plate B) with thicknesses of corrugated parts
    were varied at 0.1 cm, 0.2 cm and 0.3 cm. Laser sources with excitation
    wavelengths of 1= 1310 nm and 2= 1550 nm were launched at the first end
    of the fiber. The values of losses were recorded by using an optical power
    meter. It was clearly seen that the microbending losses were polynomially
    increased with the increment of applied pressure and the thicknesses of
    corrugated parts of Plate A and Plate B. The maximum microbending losses of
    1.5185 dBm/kPa was resulted as SMF was coupled with corrugated plates B
    with thicknesses of 0.3cm by using excitation wavelength of 1550nm. These
    values reduced to 0.7628 dBm/kPa and 0.4014 dBm/kPa as the thicknesses
    were decreased to 0.2cm and 0.1cm respectively. In comparison with a plain
    plate which acted as a reference indicator, the maximum percentage of
    microbending losses was obtained as 74.29 % for Plate A and 95.02 % for Plate
    B. In conclusions, we successfully proved the ability of SMF as a pressure sensor
    by manipulating the microbending losses experienced by the fiber. The
    employment of 1550nm of laser wavelength results better sensitivity sensor
    where the system able to detect large losses as the pressure applied on the
    corrugated surfaces.
    Matched MeSH terms: Optical Fibers
  13. Liu H, Yang H, Qiao X, Wang Y, Liu X, Lee YS, et al.
    Sensors (Basel), 2017 Jul 27;17(8).
    PMID: 28749437 DOI: 10.3390/s17081725
    We have experimentally demonstrated an optical fiber Mach-Zehnder interferometer (MZI) structure formed by a few-mode photonic crystal fiber (PCF) for curvature measurement and inscribed a fiber Bragg grating (FBG) in the PCF for the purpose of simultaneously measuring temperature. The structure consists of a PCF sandwiched between two multi-mode fibers (MMFs). Bending experimental results show that the proposed sensor has a sensitivity of -1.03 nm/m-1at a curvature range from 10 m-1to 22.4 m-1, and the curvature sensitivity of the embedded FBG was -0.003 nm/m-1. Temperature response experimental results showed that the MZI's wavelength, λa, has a sensitivity of 60.3 pm/°C, and the FBG's Bragg wavelength, λb, has sensitivity of 9.2 pm/°C in the temperature range of 8 to 100 °C. As such, it can be used for simultaneous measurement of curvature and temperature over ranges of 10 m-1to 22.4 m-1and 8 °C to 100 °C, respectively. The results show that the embedded FBG can be a good indicator to compensate the varying ambient temperature during a curvature measurement.
    Matched MeSH terms: Optical Fibers
  14. Rahim RA, Rahiman MH, Chen LL, San CK, Fea PJ
    Sensors (Basel), 2008 May 23;8(5):3406-3428.
    PMID: 27879885
    The main objective of this project is to implement the multiple fan beam projection technique using optical fibre sensors with the aim to achieve a high data acquisition rate. Multiple fan beam projection technique here is defined as allowing more than one emitter to transmit light at the same time using the switch-mode fan beam method. For the thirty-two pairs of sensors used, the 2-projection technique and 4- projection technique are being investigated. Sixteen sets of projections will complete one frame of light emission for the 2-projection technique while eight sets of projection will complete one frame of light emission for the 4-projection technique. In order to facilitate data acquisition process, PIC microcontroller and the sample and hold circuit are being used. This paper summarizes the hardware configuration and design for this project.
    Matched MeSH terms: Optical Fibers
  15. Horiguchi T, Masui Y, Zan MSD
    Sensors (Basel), 2019 Mar 27;19(7).
    PMID: 30934806 DOI: 10.3390/s19071497
    Distributed strain and temperature can be measured by using local Brillouin backscatter in optical fibers based on the strain and temperature dependence of the Brillouin frequency shift. The technique of analyzing the local Brillion backscatter in the time domain is called Brillouin optical time domain reflectometry (BOTDR). Although the best spatial resolution of classic BOTDR remains at around 1 m, some recent BOTDR techniques have attained as high as cm-scale spatial resolution. Our laboratory has proposed and demonstrated a high-spatial-resolution BOTDR called phase-shift pulse BOTDR (PSP-BOTDR), using a pair of probe pulses modulated with binary phase-shift keying. PSP-BOTDR is based on the cross-correlation of Brillouin backscatter and on the subtraction of cross-correlations obtained from the Brillouin scatterings evoked by each phase-modulated probe pulse. Although PSP-BOTDR has attained 20-cm spatial resolution, the spectral analysis method of PSP-BOTDR has not been discussed in detail. This article gives in-depth analysis of the Brillouin backscatter and the correlations of the backscatters of the PSP-BOTDR. Based on the analysis, we propose new spectral analysis methods for PSP-BOTDR. The analysis and experiments show that the proposed methods give better frequency resolution than before.
    Matched MeSH terms: Optical Fibers
  16. Abushagur AA, Arsad N, Reaz MI, Bakar AA
    Sensors (Basel), 2014;14(4):6633-65.
    PMID: 24721774 DOI: 10.3390/s140406633
    The large interest in utilising fibre Bragg grating (FBG) strain sensors for minimally invasive surgery (MIS) applications to replace conventional electrical tactile sensors has grown in the past few years. FBG strain sensors offer the advantages of optical fibre sensors, such as high sensitivity, immunity to electromagnetic noise, electrical passivity and chemical inertness, but are not limited by phase discontinuity or intensity fluctuations. FBG sensors feature a wavelength-encoding sensing signal that enables distributed sensing that utilises fewer connections. In addition, their flexibility and lightness allow easy insertion into needles and catheters, thus enabling localised measurements inside tissues and blood. Two types of FBG tactile sensors have been emphasised in the literature: single-point and array FBG tactile sensors. This paper describes the current design, development and research of the optical fibre tactile techniques that are based on FBGs to enhance the performance of MIS procedures in general. Providing MIS or microsurgery surgeons with accurate and precise measurements and control of the contact forces during tissues manipulation will benefit both surgeons and patients.
    Matched MeSH terms: Optical Fibers*
  17. Yaakob NH, Wagiran H, Hossain MI, Ramli AT, Bradley DA, Ali H
    Appl Radiat Isot, 2011 Sep;69(9):1189-92.
    PMID: 21507665 DOI: 10.1016/j.apradiso.2011.03.039
    We have investigated the thermoluminescent response and fading characteristics of germanium- and aluminium-doped SiO(2) optical fibres. These optical fibres were placed in a solid phantom and irradiated using 6 and 10 MV photon beams at doses ranging from 0.02 to 0.24 Gy delivered using a linear accelerator. In fading studies, the TL measurements were continued up to 14 days post-irradation. We have investigated the linearity of TL response as a function of dose for Ge-, Al-doped optical fibre and TLD-100 obtained for 6 and 10 MV photon irradiations. We have concentrated on doses that represent a small fraction of that delivered to the tumour to establish sensitivity of measurement for peripheral exposures in external beam radiotherapy.
    Matched MeSH terms: Optical Fibers*
  18. Al-Asadi HA, Al-Mansoori MH, Hitam S, Saripan MI, Mahdi MA
    Opt Express, 2011 Jan 31;19(3):1842-53.
    PMID: 21368999 DOI: 10.1364/OE.19.001842
    We implement a particle swarm optimization (PSO) algorithm to characterize stimulated Brillouin scattering phenomena in optical fibers. The explicit and strong dependence of the threshold exponential gain on the numerical aperture, the pump laser wavelength and the optical loss coefficient are presented. The proposed PSO model is also evaluated with the localized, nonfluctuating source model and the distributed (non-localized) fluctuating source model. Using our model, for fiber lengths from 1 km to 29 km, the calculated threshold exponential gain of stimulated Brillouin scattering is gradually decreased from 17.4 to 14.6 respectively. The theoretical results of Brillouin threshold power predicted by the proposed PSO model show a good agreement with the experimental results for different fiber lengths from 1 km to 12 km.
    Matched MeSH terms: Optical Fibers*
  19. Mahdi MA, Sheih SJ, Adikan FR
    Opt Express, 2009 Jun 08;17(12):10069-75.
    PMID: 19506658
    We demonstrate a simplified algorithm to manifest the contribution of amplified spontaneous emission in variable gain-flattened Erbium-doped fiber amplifier (EDFA). The detected signal power at the input and output ports of EDFA comprises of both signal and noise. The generated amplified spontaneous emission from EDFA cannot be differentiated by photodetector which leads to underestimation of the targeted gain value. This gain penalty must be taken into consideration in order to obtain the accurate gain level. By taking the average gain penalty within the dynamic gain range, the targeted output power is set higher than the desired level. Thus, the errors are significantly reduced to less than 0.15 dB from 15 dB to 30 dB desired gain values.
    Matched MeSH terms: Optical Fibers*
  20. Ramli AT, Bradley DA, Hashim S, Wagiran H
    Appl Radiat Isot, 2009 Mar;67(3):428-32.
    PMID: 18693114 DOI: 10.1016/j.apradiso.2008.06.034
    Ion beams are used in radiotherapy to deliver a more precise dose to the target volume while minimizing dose to the surrounding healthy tissue. For optimum dose monitoring in ion-beam therapy, it is essential to be able to measure the delivered dose with a sensitivity, spatial resolution and dynamic range that is sufficient to meet the demands of the various therapy situations. Optical fibres have been demonstrated by this group to show promising thermoluminescence properties with respect to photon, electron and proton irradiation. In particular, and also given the flexibility and small size of optical fibre cores, for example 125.0+/-0.1 microm for the Al- and Ge-doped fibres used in this study, these fibres have the potential to fulfill the above requirements. This study investigates the thermoluminescence dosimetric characteristics of variously doped SiO(2) optical fibres irradiated with alpha particles from (241)Am. Following subtraction of the gamma contribution from the above source, the thermoluminescence characteristics of variously doped SiO(2) optical fibres have been compared with that of TLD-100 rods. The irradiations were performed in a bell jar. Of related potential significance is the effective atomic number, Z(eff) of the fibre, modifying measured dose from that deposited in tissues; in the present work, a scanning electron microscope and associated energy dispersive X-ray spectroscopy facility have been used to provide evaluation of Z(eff). For Ge-doped fibres, the effective atomic numbers value was 11.4, the equivalent value for Al-doped fibres was 12.3. This paper further presents results on dose response and the glow curves obtained. The results obtained indicate there to be good potential for use of variously doped SiO(2) optical fibres in measuring ion-beam doses in radiotherapeutic applications.
    Matched MeSH terms: Optical Fibers*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links