Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Meka VS, Gorajana A, Dharmanlingam SR, Kolapalli VR
    Invest Clin, 2013 Dec;54(4):347-59.
    PMID: 24502177
    The aim of the present research was to prepare and evaluate a gastroretentive drug delivery system for metformin HCl, using synthetic and semi-synthetic polymers. The floating approach was applied for preparing gastroretentive tablets (GRT) and these tablets were manufactured by the direct compression method. The drug delivery system comprises of synthetic and semi-synthetic polymers such as polyethylene oxide and Carboxymethyl ethyl cellulose (CMEC) as release-retarding polymers. GRT were evaluated for physico-chemical properties like weight variation, hardness, assay friability, in vitro floating behaviour, swelling studies, in vitro dissolution studies and rate order kinetics. Based upon the drug release and floating properties, two formulations (MP04 & MC03) were selected as optimized formulations. The optimized formulations MP04 and MC03 followed zero order rate kinetics, with non-Fickian diffusion and first order rate kinetics with erosion mechanism, respectively. The optimized formulation was characterised with FTIR studies and it was observed that there was no interaction between the drug and polymers.
    Matched MeSH terms: Metformin/administration & dosage*
  2. Chang CT, Ang JY, Wong JM, Tan SS, Chin SK, Lim AB, et al.
    Med J Malaysia, 2020 05;75(3):286-291.
    PMID: 32467546
    AIM: This study is conducted to compare the pharmacokinetic profiles of two fixed dose combination of metformin/glibenclamide tablets (500mg/5 mg per tablet).

    MATERIALS AND METHODS: This is a single-center, single-dose, open-label, randomized, 2-treatment, 2-sequence and 2- period crossover study with a washout period of 7 days. All 28 adult male subjects were required to fast for at least 10 hours prior to drug administration and they were given access to water ad libitum during this period. Thirty minutes prior to dosing, all subjects were served with a standardized high-fat and high-calorie breakfast with a total calorie of 1000 kcal which was in accordance to the EMA Guideline on the Investigation of Bioequivalence. Subsequently, subjects were administered either the test or reference preparation with 240mL of plain water in the first trial period. During the second trial period, they received the alternate preparation. Plasma levels of glibenclamide and metformin were analysed separately using two different high performance liquid chromatography methods.

    RESULTS: The 90% confidence interval (CI) for the ratio of the AUC0-t, AUC0-∞, and Cmax of the test preparation over those of the reference preparation were 0.9693-1.0739, 0.9598- 1.0561 and 0.9220 - 1.0642 respectively. Throughout the study period, no serious drug reaction was observed. However, a total of 26 adverse events (AE)/side effects were reported, including 24 that were definitely related to the study drugs, namely giddiness (n=17), while diarrheoa (n=3), headache (n=2) and excessive hunger (n=2) were less commonly reported by the subjects.

    CONCLUSION: It can be concluded that the test preparation is bioequivalent to the reference preparation.

    Matched MeSH terms: Metformin/administration & dosage*
  3. Awaluddin R, Nugrahaningsih DAA, Solikhah EN
    Med J Malaysia, 2020 05;75(Suppl 1):10-13.
    PMID: 32471963
    INTRODUCTION: Diabetes mellitus is known as one of the risk factors for Idiopathic Pulmonary Fibrosis (IPF) development. Recently, metformin, the commonly used antidiabetic medication, is reported to have a therapeutic effect in IPF. However, the benefit of metformin therapy in IPF is still controversial. The study aims to investigate the metformin effect on the fibroblast and macrophage co-culture under lipopolysaccharides (LPS) and high glucose treatment.

    METHOD: The NIH 3T3 and RAW 264.7 co-culture were induced with LPS and high glucose before it was treated with metformin in different concentration. After 24 hours of treatment, the media and the cells were collected for further examination. The collagen expression was measured using Sirius red dye in the media. The IL-6 and TGF β mRNA examination were done using real-time PCR.

    RESULT: Our study showed that NIH 3T3 and RAW 264.7 coculture treated with metformin has higher collagen expression, but lower IL-6 mRNA expression compares to those on co-culture without treatment.

    CONCLUSION: Metformin increases fibrosis markers in LPS and high glucose-induced NIH 3T3 and RAW 264.7 coculture despite its ability to improve IL-6 mRNA expression.

    Matched MeSH terms: Metformin/administration & dosage*
  4. Yang X, Kord-Varkaneh H, Talaei S, Clark CCT, Zanghelini F, Tan SC, et al.
    Pharmacol Res, 2020 01;151:104588.
    PMID: 31816435 DOI: 10.1016/j.phrs.2019.104588
    BACKGROUND: A meta-analysis is needed to comprehensively consolidate findings from the influence of metformin on IGF-1 levels. The present study was conducted with the objective to accurately evaluate the influence of metformin intake on IGF-1 levels via a meta-analysis of randomized controlled trials.

    METHODS: A comprehensive systematic search was carried out in PubMed/MEDLINE, Web of Science, SCOPUS and Embase from inception until June 2019. Weighted mean difference (WMD) with the 95 % CI were applied for estimating the effects of metformin on serum IGF-1 levels.

    RESULTS: 11 studies involving a total of 569 individuals reported changes in IGF-1 plasma concentrations as an outcome measure. Pooled results demonstrated an overall non-significant decline in IGF-1 following metformin intake (WMD: -8.292 ng/ml, 95 % CI: -20.248, 3.664, p = 0.174) with heterogeneity among (p = 0.000,I2 = 87.1 %). The subgroup analyses displayed that intervention duration <12 weeks on children (WMD:-55.402 ng/ml, 95 % CI: -79.845, -30.960, I2 = 0.0 %) significantly reduced IGF-1. Moreover, in age 18 < years older metformin intake (WMD: 15.125 ng/ml, 95 % CI: 5.522, 24.729, I2 = 92.5 %) significantly increased IGF-1 than 18 ≤ years older (WMD:-1.038 ng/ml, 95 % CI: -3.578,1.502,I2 = 78.0 %). Following dose-response evaluation, metformin intake reduced IGF-1 (coefficient for dose-response analysis= -13.14, P = 0.041 and coefficient for liner analysis= -0.066, P = 0.038) significantly based on treatment duration.

    CONCLUSION: We found in children, intervention duration <12 weeks yielded significant reductions in IGF-1, whilst paradoxically, in participants >18 years old, metformin intake significantly increased IGF-1. We suggest that caution be taken when interpreting the findings of this review, particularly given the discordant supplementation practices between children and adults.

    Matched MeSH terms: Metformin/administration & dosage
  5. Yuen KH, Peh KK, Tan BL
    Drug Dev Ind Pharm, 1999 May;25(5):613-8.
    PMID: 10219530
    This study was conducted to compare the bioavailability of two controlled-release metformin preparations (Diabetmin Retard and Glucophage Retard) and also to correlate the in vitro and in vivo data obtained with the two preparations. Twelve healthy volunteers participated in the study, conducted according to a completely randomized, two-way crossover design. The preparations were compared using area under the plasma concentration-time curve AUC0-infinity, time to reach peak plasma concentration Tmax, and peak plasma concentration Cmax, while correlation was determined between in vitro release and in vivo absorption. Diabetmin Retard demonstrated a slower rate of in vitro release, but a faster rate of in vivo absorption than Glucophage Retard. However, the in vivo absorption of both products was found to be slower than that of drug released in vitro. A satisfactory relationship could be established between the in vitro and in vivo results, but there was no rank order correlation. No statistically significant difference was observed between the two preparations in the parameters AUC0-infinity and Cmax. However, a slight but statistically significant difference was observed between the Tmax values, but it may not be therapeutically significant. Moreover, the 90% confidence interval for the ratio of the logarithmic transformed AUC0-infinity values, as well as the logarithmic transformed Cmax values, of Diabetmin Retard over those of Glucophage Retard was within the acceptance criteria of 0.80-1.25.
    Matched MeSH terms: Metformin/administration & dosage*
  6. Lim PC, Lim SL, Oiyammaal C
    Med J Malaysia, 2012 Feb;67(1):21-4.
    PMID: 22582544
    Type-2 diabetes mellitus (T2DM) patients who were on gliclazide co-administered with metformin were changed to pre-combined glibenclamide-metformin tablets in the Endocrine Clinic, Penang Hospital. We conducted a retrospective study to evaluate the differences in glycaemic control and treatment cost following the change. Eighty patients (60% females) with a mean age of 55 years old were studied. Mean glycosylated haemoglobin (HbAlc) reduction was -0.92% (p<0.01) and -0.83% (p<0.01) after three and six months respectively. Patients with baseline HbA1c > or =8% had greater reduction in mean HbA1c (-1.36%) after six months. The treatment cost per month was reduced by 45% at 3 months (p<0.01)) and 44% at 6 months (p<0.01). The change to pre-combined glibenclamide-metformin tablets resulted in significant improvement in glycaemia and reduction in treatment cost.
    Matched MeSH terms: Metformin/administration & dosage*
  7. Ullah A, Ashraf M, Javeed A, Anjum AA, Attiq A, Ali S
    Environ Toxicol Pharmacol, 2016 Jul;45:227-34.
    PMID: 27327526 DOI: 10.1016/j.etap.2016.05.017
    Pathophysiological changes in diabetes like hyperglycemia, oxidative stress, insulin resistance and compensatory hyperinsulinemia predispose cells to malignant transformation and damage DNA repair mechanism. This study was designed to explore the potential synergistic toxic effects of anti-diabetic drug (Metformin), and an analgesic drug (Celecoxib) at cellular level. MTT assay run on Vero cell line revealed that the combinations of Metformin and Celecoxib augment the anti-proliferative effects, whereas Single cell gel electrophoresis spotlighted that Metformin produce non-significant DNA damage with the threshold concentration of 400μg/ml in peripheral blood mononuclear cells (lymphocytes and monocytes), while Celecoxib produced significant (P<0.05) DNA damage (class III comets) above the concentration of 75μg/ml, however the DNA damage or DNA tail protrusions by combinations of both drugs were less than what was observed with Celecoxib alone. Metformin or Celecoxib did not appear mutagenic against any mutant strains (TA 100 and TA 98) but their combination exhibited slight mutagenicity at much higher concentration. The results obtained at concentrations higher than the therapeutic level of drugs and reflect that Metformin in combination with Celecoxib synergistically inhibits the cell proliferation in a concentration dependent pattern. Since, this increase in cytotoxicity did not confer an increase in DNA damage; this combination could be adopted to inhibit the growth of malignant cell without producing any genotoxic or mutagenic effects at cellular level.
    Matched MeSH terms: Metformin/administration & dosage
  8. Razavi M, Karimian H, Yeong CH, Chung LY, Nyamathulla S, Noordin MI
    Drug Des Devel Ther, 2015;9:4373-86.
    PMID: 26273196 DOI: 10.2147/DDDT.S86263
    The present research was aimed at formulating a metformin HCl sustained-release formulation from a combination of polymers, using the wet granulation technique. A total of 16 formulations (F1-F16) were produced using different combinations of the gel-forming polymers: tamarind kernel powder, salep (palmate tubers of Orchis morio), and xanthan. Post-compression studies showed that there were no interactions between the active drug and the polymers. Results of in vitro drug-release studies indicated that the F10 formulation which contained 5 mg of tamarind kernel powder, 33.33 mg of xanthan, and 61.67 mg of salep could sustain a 95% release in 12 hours. The results also showed that F2 had a 55% similarity factor with the commercial formulation (C-ER), and the release kinetics were explained with zero order and Higuchi models. The in vivo study was performed in New Zealand White rabbits by gamma scintigraphy; the F10 formulation was radiolabeled using samarium (III) oxide ((153)Sm2O3) to trace transit of the tablets in the gastrointestinal tract. The in vivo data supported the retention of F10 formulation in the gastric region for 12 hours. In conclusion, the use of a combination of polymers in this study helped to develop an optimal gastroretentive drug-delivery system with improved bioavailability, swelling, and floating characteristics.
    Matched MeSH terms: Metformin/administration & dosage*
  9. Aziz TA, Hussain SA, Mahwi TO, Ahmed ZA, Rahman HS, Rasedee A
    Drug Des Devel Ther, 2018;12:735-742.
    PMID: 29670330 DOI: 10.2147/DDDT.S157113
    Background and aim: Type 2 diabetes mellitus (T2DM) is one of the major diseases confronting the health care systems. In diabetes mellitus (DM), combined use of oral hypoglycemic medications has been shown to be more effective than metformin (Met) alone in glycemic control. This study determined the effects of Ginkgo biloba (GKB) extract as an adjuvant to Met in patients with uncontrolled T2DM.

    Subjects and methods: Sixty T2DM patients were recruited in a randomized, placebo-controlled, double-blinded, and multicenter trial. The patients, currently using Met, were randomly grouped into those treated with either GKB extract (120 mg/day) or placebo (starch, 120 mg/day) for 90 days. Blood glycated hemoglobin (HbA1c), fasting serum glucose, serum insulin, body mass index (BMI), waist circumference (WC), insulin resistance, and visceral adiposity index (VAI) were determined before (baseline) and after 90 days of GKB extract treatment.

    Results: GKB extract significantly decreased blood HbA1c (7.7%±1.2% vs baseline 8.6%±1.6%, P<0.001), fasting serum glucose (154.7±36.1 mg/dL vs baseline 194.4±66.1 mg/dL, P<0.001) and insulin (13.4±7.8 μU/mL vs baseline 18.5±8.9 μU/mL, P=0.006) levels, BMI (31.6±5.1 kg/m2 vs baseline 34.0±6.0 kg/m2, P<0.001), waist WC (102.6±10.5 cm vs baseline 106.0±10.9 cm, P<0.001), and VAI (158.9±67.2 vs baseline 192.0±86.2, P=0.007). GKB extract did not negatively impact the liver, kidney, or hematopoietic functions.

    Conclusion: GKB extract as an adjuvant was effective in improving Met treatment outcomes in T2DM patients. Thus, it is suggested that GKB extract is an effective dietary supplement for the control of DM in humans.

    Matched MeSH terms: Metformin/administration & dosage
  10. Bera H, Kumar S, Maiti S
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):149-159.
    PMID: 29932998 DOI: 10.1016/j.ijbiomac.2018.06.085
    Olive oil-entrapped diethanolamine-modified high-methoxyl pectin (DMP)-gellan gum (GG)-bionanofiller composites were developed for controlled intragastric delivery of metformin HCl (MFM). DMP had a degree of amidation of 48.7% and was characterized further by FTIR, XRD and DSC analyses. MFM-loaded composites were subsequently accomplished by green synthesis via ionotropic gelation technique using zinc acetate as cross-linker. The thermal, X-ray and infrared analyses suggested an environment in the composites compatible with the drug, except certain degree of attenuation in drug's crystallinity. Scanning electron microscopy revealed almost spherical shape of the composites. Depending upon the mass ratios of GG:DMP, types of nanofiller (neusilin/bentonite/Florite) and oil inclusion, the composites exhibited variable drug encapsulation efficiency (DEE, 50-85%) and extended drug release behaviours (Q8h, 69-94%) in acetate buffer (pH 4.5). The optimized oil-entrapped Florite R NF/GG: DMP (1:1) composites eluted MFM via case-II transport mechanism and its drug release data was best fitted in zero-order kinetic model. The optimized formulation demonstrated excellent gastroretentive properties and substantial hypoglycemic effect in streptozotocin-induced diabetic rats. These novel hybrid matrices were thus found suitable for controlled intragastric delivery of MFM for the management of type 2 diabetes.
    Matched MeSH terms: Metformin/administration & dosage*
  11. Razavi M, Karimian H, Yeong CH, Fadaeinasab M, Khaing SL, Chung LY, et al.
    Drug Des Devel Ther, 2017;11:1-15.
    PMID: 28031701 DOI: 10.2147/DDDT.S115466
    This study aimed to formulate floating gastroretentive tablets containing metformin hydrochloric acid (HCl), using various grades of hydrogel such as tamarind powders and xanthan to overcome short gastric residence time of the conventional dosage forms. Different concentrations of the hydrogels were tested to determine the formulation that could provide a sustained release of 12 h. Eleven formulations with different ratios of tamarind seed powder/tamarind kernel powder (TKP):xanthan were prepared. The physical parameters were observed, and in vitro drug-release studies of the prepared formulations were carried out. Optimal formulation was assessed for physicochemical properties, thermal stability, and chemical interaction followed by in vivo gamma scintigraphy study. MKP3 formulation with a TKP:xanthan ratio of 3:2 was found to have 99.87% release over 12 h. Furthermore, in vivo gamma scintigraphy study was carried out for the optimized formulation in healthy New Zealand White rabbits, and the pharmacokinetic parameters of developed formulations were obtained. 153Sm2O3 was used to trace the profile of release in the gastrointestinal tract of the rabbits, and the drug release was analyzed. The time (Tmax) at which the maximum concentration of metformin HCl in the blood (Cmax) was observed, and it was extended four times for the gastroretentive formulation in comparison with the formulation without polymers. Cmax and the half-life were found to be within an acceptable range. It is therefore concluded that MKP3 is the optimal formulation for sustained release of metformin HCl over a period of 12 h as a result of its floating properties in the gastric region.
    Matched MeSH terms: Metformin/administration & dosage*
  12. Algariri K, Meng KY, Atangwho IJ, Asmawi MZ, Sadikun A, Murugaiyah V, et al.
    Asian Pac J Trop Biomed, 2013 May;3(5):358-66.
    PMID: 23646298 DOI: 10.1016/S2221-1691(13)60077-5
    To study the antidiabetic activity of Gynura procumbens (G. procumbens) used in the traditional management of diabetes in Southern Asia.
    Matched MeSH terms: Metformin/administration & dosage
  13. Duong JK, Kumar SS, Kirkpatrick CM, Greenup LC, Arora M, Lee TC, et al.
    Clin Pharmacokinet, 2013 May;52(5):373-84.
    PMID: 23475568 DOI: 10.1007/s40262-013-0046-9
    Metformin is contraindicated in patients with renal impairment; however, there is poor adherence to current dosing guidelines. In addition, the pharmacokinetics of metformin in patients with significant renal impairment are not well described. The aims of this study were to investigate factors influencing the pharmacokinetic variability, including variant transporters, between healthy subjects and patients with type 2 diabetes mellitus (T2DM) and to simulate doses of metformin at varying stages of renal function.
    Matched MeSH terms: Metformin/administration & dosage
  14. Razavi M, Karimian H, Yeong CH, Sarji SA, Chung LY, Nyamathulla S, et al.
    Drug Des Devel Ther, 2015;9:3125-39.
    PMID: 26124637 DOI: 10.2147/DDDT.S82935
    The purpose of this study is to evaluate the in vitro and in vivo performance of gastro-retentive matrix tablets having Metformin HCl as model drug and combination of natural polymers. A total of 16 formulations were prepared by a wet granulation method using xanthan, tamarind seed powder, tamarind kernel powder and salep as the gel-forming agents and sodium bicarbonate as a gas-forming agent. All the formulations were evaluated for compendial and non-compendial tests and in vitro study was carried out on a USP-II dissolution apparatus at a paddle speed of 50 rpm. MOX2 formulation, composed of salep and xanthan in the ratio of 4:1 with 96.9% release, was considered as the optimum formulation with more than 90% release in 12 hours and short floating lag time. In vivo study was carried out using gamma scintigraphy in New Zealand White rabbits, optimized formulation was incorporated with 10 mg of (153)Sm for labeling MOX2 formulation. The radioactive samarium oxide was used as the marker to trace transit of the tablets in the gastrointestinal tract. The in vivo data also supported retention of MOX2 formulation in the gastric region for 12 hours and were different from the control formulation without a gas and gel forming agent. It was concluded that the prepared floating gastro-retentive matrix tablets had a sustained-release effect in vitro and in vivo, gamma scintigraphy played an important role in locating the oral transit and the drug-release pattern.
    Matched MeSH terms: Metformin/administration & dosage
  15. Robinson S, Kwan Z, Tang MM
    Dermatol Ther, 2019 07;32(4):e12953.
    PMID: 31044492 DOI: 10.1111/dth.12953
    Insulin, insulin-like growth factor-1 (IGF-1) and essential amino acids activate the mechanistic target of rapamycin complex 1 (mTORC1), the main nutrient-sensitive kinase. Metformin, through inhibition of mTORC1 may improve acne. A 12-week, randomized, open-labeled study evaluated the efficacy and safety of metformin as an adjunct for moderate to severe facial acne. In total, 84 patients received either oral tetracycline 250 mg bd and topical benzoyl peroxide 2.5% with or without metformin 850 mg daily. Evaluations constituted lesion counts, the Cardiff Acne Disability Index (CADI), metabolic parameters and treatment success rate (Investigators Global Assessment score of 0 or 1 or improvement of two grades). Treatment success rates were higher in the metformin group (66.7% vs. 43.2%; p = .04). The mean percentage reduction from baseline in total lesion counts at Week 12 was greater in the metformin group (71.4% vs. 65.3%; p = .278). The CADI scores showed a greater mean reduction in the metformin group (4.82 vs. 4.22; p = .451). Metformin was equally efficacious in improving acne in lean and overweight subjects. Gastrointestinal symptoms were noted in 31.7% of subjects on metformin. This study presents favorable data for metformin as an adjunct for acne treatment. Further randomized placebo-controlled studies are required.
    Matched MeSH terms: Metformin/administration & dosage*
  16. Azar ST, Echtay A, Wan Bebakar WM, Al Araj S, Berrah A, Omar M, et al.
    Diabetes Obes Metab, 2016 10;18(10):1025-33.
    PMID: 27376711 DOI: 10.1111/dom.12733
    AIMS: Compare effects of liraglutide 1.8 mg and sulphonylurea, both combined with metformin, on glycaemic control in patients with type 2 diabetes (T2D) fasting during Ramadan.

    MATERIALS AND METHODS: In this up to 33-week, open-label, active-controlled, parallel-group trial, adults [glycated haemoglobin (HbA1c) 7%-10% (53-86 mmol/mol); body mass index ≥20 kg/m(2) ; intent to fast] were randomized (1:1) ≥10 weeks before Ramadan to either switch to once-daily liraglutide (final dose 1.8 mg) or continue pre-trial sulphonylurea at maximum tolerated dose, both with metformin.

    PRIMARY ENDPOINT: change in fructosamine, a validated marker of short-term glycaemic control, during Ramadan.

    RESULTS: Similar reductions in fructosamine levels were observed for both groups during Ramadan [liraglutide (-12.8 µmol/L); sulphonylurea (-16.4 µmol/L); estimated treatment difference (ETD) 3.51 µmol/L (95% CI: -5.26; 12.28); p = 0.43], despite lower fructosamine levels in the liraglutide group at start of Ramadan. Fewer documented symptomatic hypoglycaemic episodes were reported in liraglutide-treated (2%, three subjects) versus sulphonylurea-treated patients (11%, 18 subjects). No severe hypoglycaemic episodes were reported by either group. Body weight decreased more during Ramadan with liraglutide (ETD: -0.54 kg; 95% CI: -0.94;-0.14; p = 0.0091). The proportion of patients reporting adverse events was similar between groups. Liraglutide led to greater HbA1c reduction [ETD: -0.59% (-6.40 mmol/mol), 95% CI: -0.79; -0.38%; -8.63; -4.17 mmol/mol; p 

    Matched MeSH terms: Metformin/administration & dosage*
  17. Gillani SW, Sulaiman SAS, Abdul MIM, Baig MR
    Cardiovasc Diabetol, 2017 08 14;16(1):103.
    PMID: 28807030 DOI: 10.1186/s12933-017-0584-9
    BACKGROUND: We aimed to investigate the efficacy of ascorbic acid and acetylsalicylic acid among type II diabetes mellitus patients using metformin (only) for diabetes management therapy.

    METHOD: A 12-month single blinded multicenter randomized control trial was designed to investigate the measured variables [Glycated Hemoglobin (HbA1c), Renal function, Albumin Creatinine Ratio (ACR) etc.]. The trial was randomized into 2 experimental parallel arms (ascorbic acid vs acetylsalicylic acid) were blinded with study supplements in combination with metformin and findings were compared to control arm with metformin alone and blinded with placebo. Withdrawal criteria was defined to maintain the equity and balance in the participants in the whole trial.

    FINDING: Patients with metformin and ascorbic acid (parallel arm I) was twice more likely to reduce HbA1c than metformin alone (control arm) in a year (OR 2.31 (95% CI 1.87-4.42) p metformin is more effective against reducing risks for diabetes related long-term complications (including ACR). TRIAL details Registration No: NTR-6100, Registry Name: Netherlands Trial Registry, URL: http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=6100 , Date of Registration: 20th October, 2016, Date of first Enrollment: 1 November, 2015.

    Matched MeSH terms: Metformin/administration & dosage*
  18. Nwanaji-Enwerem JC, Chung FF, Van der Laan L, Novoloaca A, Cuenin C, Johansson H, et al.
    Clin Epigenetics, 2021 12 17;13(1):224.
    PMID: 34920739 DOI: 10.1186/s13148-021-01218-y
    Metformin and weight loss relationships with epigenetic age measures-biological aging biomarkers-remain understudied. We performed a post-hoc analysis of a randomized controlled trial among overweight/obese breast cancer survivors (N = 192) assigned to metformin, placebo, weight loss with metformin, or weight loss with placebo interventions for 6 months. Epigenetic age was correlated with chronological age (r = 0.20-0.86; P metformin therapy may be inadequate to observe expected epigenetic age deceleration. Longer duration studies are needed to better characterize these relationships.Trial Registration: Registry Name: ClincialTrials.Gov.Registration Number: NCT01302379.Date of Registration: February 2011.URL: https://clinicaltrials.gov/ct2/show/NCT01302379.
    Matched MeSH terms: Metformin/administration & dosage
  19. Wan Seman WJ, Kori N, Rajoo S, Othman H, Mohd Noor N, Wahab NA, et al.
    Diabetes Obes Metab, 2016 06;18(6):628-32.
    PMID: 26889911 DOI: 10.1111/dom.12649
    The aim of the present study was to assess the hypoglycaemia risk and safety of dapagliflozin compared with sulphonylurea during the fasting month of Ramadan. In this 12-week, randomized, open-label, two-arm parallel group study, 110 patients with type 2 diabetes who were receiving sulphonylurea and metformin were randomized either to receive 10 mg (n = 58) of dapagliflozin daily or to continue receiving sulphonylurea (n = 52). The primary outcome was to compare the effects of dapagliflozin and sulphonylurea on the proportions of patients with at least one episode of hypoglycaemia during Ramadan, as well as to assess the safety of dapagliflozin when used to treat patients observing Ramadan. A lower proportion of patients had reported or documented hypoglycaemia in the dapagliflozin group than in the sulphonylurea group: 4 (6.9%) versus 15 (28.8%); p = 0.002. The relative risk of any reported or documented hypoglycaemia in the 4th week of Ramadan was significantly lower in the dapagliflozin group: RR=0.24, 95%CI: 0.09, 0.68; p=0.002. No significance differences were observed between the two groups regarding postural hypotension (13.8 vs 3.8%; p = 0.210) or urinary tract infections (10.3 vs 3.8%; p = 0.277). In conclusion, fewer patients exhibited hypoglycaemia in the dapagliflozin group than in the sulphonylurea group.
    Matched MeSH terms: Metformin/administration & dosage*
  20. Anwar A, Soomaroo A, Anwar A, Siddiqui R, Khan NA
    Exp Parasitol, 2020 Aug;215:107915.
    PMID: 32461112 DOI: 10.1016/j.exppara.2020.107915
    Acanthamoeba castellanii is an opportunistic protozoan responsible for serious human infections including Acanthamoeba keratitis and granulomatous amoebic encephalitis. Despite advances in antimicrobial therapy and supportive care, infections due to Acanthamoeba are a major public concern. Current methods of treatment are not fully effective against both the trophozoite and cyst forms of A. castellanii and are often associated with severe adverse effects, host cell cytotoxicity and recurrence of infection. Therefore, there is an urgent need to develop new therapeutic approaches for the treatment and management of Acanthamoebic infections. Repurposing of clinically approved drugs is a viable avenue for exploration and is particularly useful for neglected and rare diseases where there is limited interest by pharmaceutical companies. Nanotechnology-based drug delivery systems offer promising approaches in the biomedical field, particularly in diagnosis and drug delivery. Herein, we conjugated an antihyperglycemic drug, metformin with silver nanoparticles and assessed its anti-acanthamoebic properties. Characterization by ultraviolet-visible spectrophotometry and atomic force microscopy showed successful formation of metformin-coated silver nanoparticles. Amoebicidal and amoebistatic assays revealed that metformin-coated silver nanoparticles reduced the viability and inhibited the growth of A. castellanii significantly more than metformin and silver nanoparticles alone at both 5 and 10 μM after 24 h incubation. Metformin-coated silver nanoparticles also blocked encystation and inhibited the excystation in Acanthamoeba after 72 h incubation. Overall, the conjugation of metformin with silver nanoparticles was found to enhance its antiamoebic effects against A. castellanii. Furthermore, the pretreatment of A. castellanii with metformin and metformin-coated silver nanoparticles for 2 h also reduced the amoebae-mediated host cell cytotoxicity after 24 h incubation from 73% to 10% at 10 μM, indicating that the drug-conjugated silver nanoparticles confer protection to human cells. These findings suggest that metformin-coated silver nanoparticles hold promise in the improved treatment and management of Acanthamoeba infections.
    Matched MeSH terms: Metformin/administration & dosage*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links