METHOD: For 293 consecutive patients admitted to our hospital via the emergency department for COVID-19 between 01/03/20 -18/05/20, demographic data, laboratory findings, admission electrocardiograph and clinical observations were compared in those who survived and those who died within 6 weeks. Hospital records were reviewed for prior electrocardiograms for comparison with those recorded on presentation with COVID-19.
RESULTS: Patients who died were older than survivors (82 vs 69.8 years, p 455 ms (males) and >465 ms (females) (p = 0.028, HR 1.49 [1.04-2.13]), as predictors of mortality. QTc prolongation beyond these dichotomy limits was associated with increased mortality risk (p = 0.0027, HR 1.78 [1.2-2.6]).
CONCLUSION: QTc prolongation occurs in COVID-19 illness and is associated with poor outcome.
STUDY DESIGN AND SETTING: Scientific databases were systematically searched to identify relevant trials of HCQ/CQ for the treatment of COVID-19 published up to 10 September 2020. The Cochrane risk-of-bias tools for randomized trials and non-randomized trials of interventions were used to assess risk of bias in the included studies. A 10-item Consolidated Standards of Reporting Trials (CONSORT) harm extension was used to assess quality of harm reporting in the included trials.
RESULTS: Sixteen trials, including fourteen randomized trials and two non-randomized trials, met the inclusion criteria. The results from the included trials were conflicting and lacked effect estimates adjusted for baseline disease severity or comorbidities in many cases, and most of the trials recruited a fairly small cohort of patients. None of the clinical trials met the CONSORT criteria in full for reporting harm data in clinical trials. None of the 16 trials had an overall 'low' risk of bias, while four of the trials had a 'high', 'critical', or 'serious' risk of bias. Biases observed in these trials arise from the randomization process, potential deviation from intended interventions, outcome measurements, selective reporting, confounding, participant selection, and/or classification of interventions.
CONCLUSION: In general, the quality of currently available evidence for the effectiveness of CQ/HCQ in patients with COVID-19 is suboptimal. The importance of a properly designed and reported clinical trial cannot be overemphasized amid the COVID-19 pandemic, and its dismissal could lead to poorer clinical and policy decisions, resulting in wastage of already stretched invaluable health care resources.
METHODS: A retrospective study involving pregnant women with SLE who had antenatal follow-up and delivery in between 1 January 2007 and 1 January 2017. All participants were retrospectively enrolled and categorized into two groups based on hydroxychloroquine treatment during pregnancy.
RESULTS: There were 82 pregnancies included with 47 (57.3%) in the hydroxychloroquine group and 35 (42.7%) in the non-hydroxychloroquine group. Amongst hydroxychloroquine users, there were significantly more pregnancies with musculoskeletal involvement (p = 0.03), heavier mean neonatal birthweight (p = 0.02), and prolonged duration of pregnancy (p = 0.001). In non-hydroxychloroquine patients, there were significantly more recurrent miscarriages (p = 0.003), incidence of hypertension (p = 0.01) and gestational diabetes mellitus (p = 0.01) and concurrent medical illness (p = 0.005). Hydroxychloroquine use during pregnancy was protective against hypertension (p = 0.001), and the gestational age at delivery had significant effect on the neonatal birthweight (p = 0.001). However, duration of the disease had a significant negative effect on the neonatal birthweight (p = 0.016).
CONCLUSION: Hydroxychloroquine enhanced better neonatal outcomes and reduced adverse pregnancy outcomes and antenatal complications such as hypertension and diabetes.
OBJECTIVE: Aim of the present study was to analyse the molecular interaction of nitrogen heterocyclic based drugs (hydroxychloroquine, remdesivir and lomefloxacin) with various SARSCoV- 2 proteins (RdRp, PLPro, Mpro and spike proteins) using a molecular docking approach.
METHODS: We have performed docking study using PyRx software, and Discovery Studio Visualizer was used to visualise the molecular interactions. The designed nitrogen heterocyclic analogues were checked for Lipinski's rule of five, Veber's Law and Adsorption, Distribution, Metabolism, and Excretion (ADME) threshold. After obtaining the docking results of existing nitrogen heterocyclic drugs, we modified the selected drugs to get molecules with better affinity against SARS-CoV-2.
RESULTS: Hydroxychloroquine bound to RdRp, spike protein, PLPro and Mpro at -5.2, -5.1, -6.7 and -6.0 kcal/mol, while remdesivir bound to RdRp, spike protein, PLPro, and Mpro at -6.1, -6.9, -6.4 and -6.9 kcal/mol, respectively. Lomefloxacin bound to RdRp, spike protein, PLPro and Pro at -6.4, -6.6, -7.2 and -6.9 kcal/mol. ADME studies of all these compounds indicated lipophilicity and high gastro intestine absorbability. The modified drug structures possess better binding efficacy towards at least one target than their parent compounds.
CONCLUSION: The outcome reveals that the designed nitrogen heterocyclics could contribute to developing the potent inhibitory drug SARS-CoV-2 with strong multi-targeted inhibition ability and reactivity.
METHODS: We included 446 SARS-CoV-2 RT-PCR-positive patients taking at least one treatment drug for COVID-19 within a period of one month (March-April 2020). In addition to COVID-19-related treatment (HCQ/PI), concomitant drugs with risks of QTc prolongation were considered. We defined QTc prolongation as QTc interval of ≥470 ms in postpubertal males, and ≥480 ms in postpubertal females.
RESULTS AND DISCUSSION: QTc prolongation events occurred in 28/446 (6.3%) patients with an incidence rate of 1 case per 100 person-days. A total of 26/28 (93%) patients who had prolonged QTc intervals received at least two pro-QT drugs. Multivariate analysis showed that HCQ and PI combination therapy had five times higher odds of QTc prolongation as compared to HCQ-only therapy after controlling for age, cardiovascular disease, SIRS and the use of concurrent QTc-prolonging agents besides HCQ and/or PI (OR 5.2; 95% CI, 1.11-24.49; p = 0.036). Independent of drug therapy, presence of SIRS resulted in four times higher odds of QTc prolongation (OR 4.3; 95% CI, 1.66-11.06; p = 0.003). In HCQ-PI combination group, having concomitant pro-QT drugs led to four times higher odds of QTc prolongation (OR 3.8; 95% CI, 1.53-9.73; p = 0.004). Four patients who had prolonged QTc intervals died but none were cardiac-related deaths.
WHAT IS NEW AND CONCLUSION: In our cohort, hydroxychloroquine monotherapy had low potential to increase QTc intervals. However, when given concurrently with protease inhibitors which have possible or conditional risk, the odds of QTc prolongation increased fivefold. Interestingly, independent of drug therapy, the presence of systemic inflammatory response syndrome (SIRS) resulted in four times higher odds of QTc prolongation, leading to the postulation that some QTc events seen in COVID-19 patients may be due to the disease itself. ECG monitoring should be continued for at least a week from the initiation of treatment.
RESULTS: The pharmacophore modelling mode of 5RE6 displayed two Hydrogen Bond Acceptors (HBA) and one Hydrophobic (HY) interaction. Besides, the pharmacophore model of 5REX showed two HBA and two HY interactions. Finally, the pharmacophore model of 5RFZ showed three HBA and one HY interaction. Based on ligand-based approach, 20 Schiff-based vanillin derivatives, showed strong MPro inhibition activity. This was due to their good alignment and common features to PDB-5RE6. Similarly, monolaurin and tetrodotoxin displayed some significant activity against SARS-CoV-2. From structure-based approach, vanillin derivatives (1) to (12) displayed some potent MPro inhibition against SARS-CoV-2. Favipiravir, chloroquine and hydroxychloroquine also showed some significant MPro inhibition.