Uncontrolled stormwater runoff not only creates drainage problems and flash floods but also presents a considerable threat to water quality and the environment. These problems can, to a large extent, be reduced by a type of stormwater management approach employing permeable pavement systems (PPS) in urban, industrial and commercial areas, where frequent problems are caused by intense undrained stormwater. PPS could be an efficient solution for sustainable drainage systems, and control water security as well as renewable energy in certain cases. Considerable research has been conducted on the function of PPS and their improvement to ensure sustainable drainage systems and water quality. This paper presents a review of the use of permeable pavement for different purposes. The paper focuses on drainage systems and stormwater runoff quality from roads, driveways, rooftops and parking lots. PPS are very effective for stormwater management and water reuse. Moreover, geotextiles provide additional facilities to reduce the pollutants from infiltrate runoff into the ground, creating a suitable environment for the biodegradation process. Furthermore, recently, ground source heat pumps and PPS have been found to be an excellent combination for sustainable renewable energy. In addition, this study has identified several gaps in the present state of knowledge on PPS and indicates some research needs for future consideration.
Matched MeSH terms: Construction Materials/analysis
This paper presents a review of the properties of fresh concrete including workability, heat of hydration, setting time, bleeding, and reactivity by using mineral admixtures fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA). Comparison of normal and high-strength concrete in which cement has been partially supplemented by mineral admixture has been considered. It has been concluded that mineral admixtures may be categorized into two groups: chemically active mineral admixtures and microfiller mineral admixtures. Chemically active mineral admixtures decrease workability and setting time of concrete but increase the heat of hydration and reactivity. On the other hand, microfiller mineral admixtures increase workability and setting time of concrete but decrease the heat of hydration and reactivity. In general, small particle size and higher specific surface area of mineral admixture are favourable to produce highly dense and impermeable concrete; however, they cause low workability and demand more water which may be offset by adding effective superplasticizer.
Matched MeSH terms: Construction Materials/analysis*
Optimized and automated methods for handling construction and demolition waste (CDW) are crucial for improving the resource recovery process in waste management. Automated waste recognition is a critical step in this process, and it relies on robust image segmentation techniques. Prompt-guided segmentation methods provide promising results for specific user needs in image recognition. However, the current state-of-the-art segmentation methods trained for generic images perform unsatisfactorily on CDW recognition tasks, indicating a domain gap. To address this gap, a user-guided segmentation pipeline is developed in this study that leverages prompts such as bounding boxes, points, and text to segment CDW in cluttered environments. The adopted approach achieves a class-wise performance of around 70 % in several waste categories, surpassing the state-of-the-art algorithms by 9 % on average. This method allows users to create accurate segmentations by drawing a bounding box, clicking, or providing a text prompt, minimizing the time spent on detailed annotations. Integrating this human-machine system as a user-friendly interface into material recovery facilities enhances the monitoring and processing of waste, leading to better resource recovery outcomes in waste management.
Matched MeSH terms: Construction Materials/analysis
The application of phase change materials (PCMs) in green buildings has been increasing rapidly. PCM applications in green buildings include several development models. This paper briefly surveys the recent research and development activities of PCM technology in building applications. Firstly, a basic description of phase change and their principles is provided; the classification and applications of PCMs are also included. Secondly, PCM models in buildings are reviewed and discussed according to the wall, roof, floor, and cooling systems. Finally, conclusions are presented based on the collected data.
Matched MeSH terms: Construction Materials/analysis*
Strut-and-tie model (STM) method evolved as one of the most useful designs for shear critical structures and discontinuity regions (D-regions). It provides widespread applications in the design of deep beams as recommended by many codes. The estimation of bottle-shaped strut dimensions, as a main constituent of STM, is essential in design calculations. The application of carbon fibre reinforced polymer (CFRP) as lightweight material with high tensile strength for strengthening D-regions is currently on the increase. However, the CFRP-strengthening of deep beam complicates the dimensions estimation of bottle-shaped strut. Therefore, this research aimed to investigate the effect of CFRP-strengthening on the deformation of RC strut in the design of deep beams. Two groups of specimens comprising six unstrengthened and six CFRP-strengthened RC deep beams with the shear span to the effective depth ratios (a/d) of 0.75, 1.00, 1.25, 1.50, 1.75, and 2.00 were constructed in this research. These beams were tested under four-point bending configuration. The deformation of struts was experimentally evaluated using the values of strain along and perpendicular to the strut centreline. The evaluation was made by the comparisons between unstrengthened and CFRP-strengthened struts regarding the widening and shortening. The key variables were a/d ratio and applied load level.
Matched MeSH terms: Construction Materials/analysis*
The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern.
Matched MeSH terms: Construction Materials/analysis*
Imaging techniques are high in demand for modern nondestructive evaluation of large-scale concrete structures. The travel-time tomography (TTT) technique, which is based on the principle of mapping the change of propagation velocity of transient elastic waves in a measured object, has found increasing application for assessing in situ concrete structures. The primary aim of this technique is to detect defects that exist in a structure. The TTT technique can offer an effective means for assessing tendon duct filling of prestressed concrete (PC) elements. This study is aimed at clarifying some of the issues pertaining to the reliability of the technique for this purpose, such as sensor arrangement, model, meshing, type of tendon sheath, thickness of sheath, and material type as well as the scale of inhomogeneity. The work involved 2D simulations of wave motions, signal processing to extract travel time of waves, and tomography reconstruction computation for velocity mapping of defect in tendon duct.
Matched MeSH terms: Construction Materials/analysis*
A laboratory-based experiment procedure of reception plate method for structure-borne sound source characterisation is reported in this paper. The method uses the assumption that the input power from the source installed on the plate is equal to the power dissipated by the plate. In this experiment, rectangular plates having high and low mobility relative to that of the source were used as the reception plates and a small electric fan motor was acting as the structure-borne source. The data representing the source characteristics, namely, the free velocity and the source mobility, were obtained and compared with those from direct measurement. Assumptions and constraints employing this method are discussed.
Matched MeSH terms: Construction Materials/analysis*
The activity concentrations of 226Ra, 232Th and 40K radionuclides from common building materials used by Malaysian people for construction purposes were studied using High-Purity Germanium (HPGe) detector. The measured activity concentrations of the aforementioned radionuclides range from 10 ± 1 Bq kg-1 (limestone) to 155 ± 61 Bq kg-1 (feldspar), 12 ± 3 Bq kg-1 (limestone) to 274 ± 8 Bq kg-1 (kaolin) and 62 ± 19 Bq kg-1 (limestone) to 1114 ± 20 Bq kg-1 (pottery stone) for 226Ra, 232Th and 40K, respectively. The measured activity concentrations of the natural radionuclides reported herein were found to be in accordance with other previous studies. In general, the activity concentration of the natural radionuclides revealed that all the determined values were below the recommended limit.
Matched MeSH terms: Construction Materials/analysis*
The seismic performance of RC columns could be significantly improved by continuous spiral reinforcement as a result of its adequate ductility and energy dissipation capacity. Due to post-earthquake brittle failure observations in beam-column connections, the seismic behaviour of such connections could greatly be improved by simultaneous application of this method in both beams and columns. In this study, a new proposed detail for beam to column connection introduced as "twisted opposing rectangular spiral" was experimentally and numerically investigated and its seismic performance was compared against normal rectangular spiral and conventional shear reinforcement systems. In this study, three full scale beam to column connections were first designed in conformance with Eurocode (EC2-04) for low ductility class connections and then tested by quasistatic cyclic loading recommended by ACI Building Code (ACI 318-02). Next, the experimental results were validated by numerical methods. Finally, the results revealed that the new proposed connection could improve the ultimate lateral resistance, ductility, and energy dissipation capacity.
Matched MeSH terms: Construction Materials/analysis*
The present study is focused on clarifying the influence of waste gypsum (WG) in replacing natural gypsum (NG) in the production of ordinary Portland cement (OPC). WG taken from slip casting moulds in a ceramic factory was formed from the hydration of plaster of paris. Clinker and 3-5wt% of WG was ground in a laboratory ball mill to produce cement waste gypsum (CMWG). The same procedure was repeated with NG to substitute WG to prepare cement natural gypsum (CMNG). The properties of NG and WG were investigated via X-ray Diffraction (XRD), X-ray fluorescence (XRF) and differential scanning calorimetry (DSC)/thermogravimetric (TG) to evaluate the properties of CMNG and CMWG. The mechanical properties of cement were tested in terms of setting time, flexural and compressive strength. The XRD result of NG revealed the presence of dihydrate while WG contained dihydrate and hemihydrate. The content of dihydrate and hemihydrates were obtained via DSC/TG, and the results showed that WG and NG contained 12.45% and 1.61% of hemihydrate, respectively. Furthermore, CMWG was found to set faster than CMNG, an average of 15.29% and 13.67% faster for the initial and final setting times, respectively. This was due to the presence of hemihydrate in WG. However, the values obtained for flexural and compressive strength were relatively the same for CMNG and CMWG. Therefore, this result provides evidence that WG can be used as an alternative material to NG in the production of OPC.
Matched MeSH terms: Construction Materials/analysis*
The flame retardancy of medium density fiberboard (MDF) made from mixture of rubberwood fibers and recycled old corrugated containers was studied. Aluminum trihydroxide (ATH) was used as a fire retardant additive and mixed with the fibers to manufacture experimental MDF panels using wet process. Phenol formaldehyde (PF) resin in liquid, 2% based on oven dry weight of fibers, was used along with 0%, 10%, 15% and 20% of ATH. The flame retardant test was done using the limiting oxygen index (LOI) test. The other properties investigated include internal bond strength, thickness swelling and water absorption. The results showed that ATH loading increased as the LOI of MDF increased. This demonstrated that ATH could improved the fire retardant property of MDF at sufficient loading. An increase in concentration of ATH showed an increase in the IB values of MDF made without resin. MDF panels made without resin showed a progressive increase in internal bond as the composition of recycled old corrugated containers fiber increased. Addition of resin improved internal bond strength and reduced thickness swelling, and water absorption. Thickness swelling of panel increased as the composition of recycled old corrugated containers fiber increased. Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) showed that there is indication of ATH and resin filling the void space in between fibers.
Matched MeSH terms: Construction Materials/analysis*
Samples of natural and manufactured building materials collected from Algiers have been analysed for 226Ra, 232Th and 40K using a high-resolution HPGe gamma-spectrometry system. The specific concentrations for 226Ra, 232Th and 40K, from the selected building materials, ranged from (12-65 Bq kg(-1)), (7-51 B qkg(-1)) and (36-675 Bq kg(-1)), respectively. The measured activity concentrations for these natural radionuclides were compared with the reported data of other countries and with the world average activity of soil. Radium-equivalent activities were calculated for the measured samples to assess the radiation hazards arising from using those materials in the construction of dwellings. All building materials showed Ra(eq) activities lower than the limit set in the OECD report (370 Bq kg(-1)), equivalent to external gamma-dose of 1.5 mSv yr(-1).
Matched MeSH terms: Construction Materials/analysis*
Road distress results in high maintenance costs. However, increased understandings of asphalt behaviour and properties coupled with technological developments have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, polymers have become extremely popular as modifiers to improve the performance of the asphalt mix. This study investigates the performance characteristics of epoxidized natural rubber (ENR)-modified hot-mix asphalt. Tests were conducted using ENR-asphalt mixes prepared using the wet process. Mechanical testing on the ENR-asphalt mixes showed that the resilient modulus of the mixes was greatly affected by testing temperature and frequency. On the other hand, although rutting performance decreased at high temperatures because of the increased elasticity of the ENR-asphalt mixes, fatigue performance improved at intermediate temperatures as compared to the base mix. However, durability tests indicated that the ENR-asphalt mixes were slightly susceptible to the presence of moisture. In conclusion, the performance of asphalt pavement can be enhanced by incorporating ENR as a modifier to counter major road distress.
Matched MeSH terms: Construction Materials/analysis*
The concentrations of primordial radionuclides (226Ra, 232Th and 40K) in commonly used building materials (brick, cement and sand), the raw materials of cement and the by-products of coal-fired power plants (fly ash) collected from various manufacturers and suppliers in Bangladesh were determined via gamma-ray spectrometry using an HPGe detector. The results showed that the mean concentrations of 226Ra, 232Th and 40K in all studied samples slightly exceeded the typical world average values of 50 Bq kg(-1), 50 Bq kg(-1) and 500 Bq kg(-1), respectively. The activity concentrations (especially 226Ra) of fly-ash-containing cement in this study were found to be higher than those of fly-ash-free cement. To evaluate the potential radiological risk to individuals associated with these building materials, various radiological hazard indicators were calculated. The radium equivalent activity values for all samples were found to be lower than the recommended limit for building materials of 370 Bq kg(-1), with the exception of the fly ash. For most samples, the values of the alpha index and the radiological hazard (external and internal) indices were found to be within the safe limit of 1. The mean indoor absorbed dose rate was observed to be higher than the population-weighted world average of 84 nGy h(-1), and the corresponding annual effective dose for most samples fell below the recommended upper dose limit of 1 mSv y(-1). For all investigated materials, the values of the gamma index were found to be greater than 0.5 but less than 1, indicating that the gamma dose contribution from the studied building materials exceeds the exemption dose criterion of 0.3 mSv y(-1) but complies with the upper dose principle of 1 mSv y(-1).
Matched MeSH terms: Construction Materials/analysis*
Enhanced resonance search (ERS) is a nondestructive testing method that has been created to evaluate the quality of a pavement by means of a special instrument called the pavement integrity scanner (PiScanner). This technique can be used to assess the thickness of the road pavement structure and the profile of shear wave velocity by using the principle of surface wave and body wave propagation. In this study, the ERS technique was used to determine the actual thickness of the asphaltic pavement surface layer, while the shear wave velocities obtained were used to determine its dynamic elastic modulus. A total of fifteen locations were identified and the results were then compared with the specifications of the Malaysian PWD, MDD UKM, and IKRAM. It was found that the value of the elastic modulus of materials is between 3929 MPa and 17726 MPa. A comparison of the average thickness of the samples with the design thickness of MDD UKM showed a difference of 20 to 60%. Thickness of the asphalt surface layer followed the specifications of Malaysian PWD and MDD UKM, while some of the values of stiffness obtained are higher than the standard.
Matched MeSH terms: Construction Materials/analysis*
Concentrations of primordial radionuclides in common construction materials collected from the south-west coastal region of India were determined using a high-purity germanium gamma-ray spectrometer. Average specific activities (Bq kg(-1)) for (238)U((226)Ra) in cement, brick, soil and stone samples were obtained as 54 ± 13, 21 ± 4, 50 ± 12 and 46 ± 8, respectively. Respective values of (232)Th were obtained as 65 ± 10, 21 ± 3, 58 ± 10 and 57 ± 12. Concentrations of (40)K radionuclide in cement, brick, soil and stone samples were found to be 440 ± 91, 290 ± 20, 380 ± 61 and 432 ± 64, respectively. To evaluate the radiological hazards, radium equivalent activity, various hazard indices, absorbed dose rate and annual effective dose have been calculated, and compared with the literature values. Obtained data could be used as reference information to assess any radiological contamination due to construction materials in future.
Matched MeSH terms: Construction Materials/analysis
Conservation and preservation of freshwater is increasingly becoming important as the global population grows. Presently, enormous volumes of freshwater are used to mix concrete. This paper reports experimental findings regarding the feasibility of using treated effluents as alternatives to freshwater in mixing concrete. Samples were obtained from three effluent sources: heavy industry, a palm-oil mill and domestic sewage. The effluents were discharge into public drain without danger to human health and natural environment. Chemical compositions and physical properties of the treated effluents were investigated. Fifteen compositional properties of each effluent were correlated with the requirements set out by the relevant standards. Concrete mixes were prepared using the effluents and freshwater to establish a base for control performance. The concrete samples were evaluated with regard to setting time, workability, compressive strength and permeability. The results show that except for some slight excesses in total solids and pH, the properties of the effluents satisfy the recommended disposal requirements. Two concrete samples performed well for all of the properties investigated. In fact, one sample was comparatively better in compressive strength than the normal concrete; a 9.4% increase was observed at the end of the curing period. Indeed, in addition to environmental conservation, the use of treated effluents as alternatives to freshwater for mixing concrete could save a large amount of freshwater, especially in arid zones.
Matched MeSH terms: Construction Materials/analysis*
The addition of a photocatalyst to ordinary building materials such as concrete creates environmentally friendly materials by which air pollution or pollution of the surface can be diminished. The use of LiNbO3 photocatalyst in concrete material would be more beneficial since it can produce artificial photosynthesis in concrete. In these research photoassisted solid-gas phases reduction of carbon dioxide (artificial photosynthesis) was performed using a photocatalyst, LiNbO3, coated on concrete surface under illumination of UV-visible or sunlight and showed that LiNbO3 achieved high conversion of CO2 into products despite the low levels of band-gap light available. The high reaction efficiency of LiNbO3 is explained by its strong remnant polarization (70 µC/cm(2)), allowing a longer lifetime of photoinduced carriers as well as an alternative reaction pathway. Due to the ease of usage and good photocatalytic efficiency, the research work done showed its potential application in pollution prevention.
Matched MeSH terms: Construction Materials/analysis