Displaying all 4 publications

Abstract:
Sort:
  1. Molahid VLM, Kusin FM, Syed Hasan SNM
    Environ Geochem Health, 2023 Jul;45(7):4439-4460.
    PMID: 36811700 DOI: 10.1007/s10653-023-01513-y
    Mining activities have often been associated with the issues of waste generation, while mining is considered a carbon-intensive industry that contributes to the increasing carbon dioxide emission to the atmosphere. This study attempts to evaluate the potential of reusing mining waste as feedstock material for carbon dioxide sequestration through mineral carbonation. Characterization of mining waste was performed for limestone, gold and iron mine waste, which includes physical, mineralogical, chemical and morphological analyses that determine its potential for carbon sequestration. The samples were characterized as having alkaline pH (7.1-8.3) and contain fine particles, which are important to facilitate precipitation of divalent cations. High amount of cations (CaO, MgO and Fe2O3) was found in limestone and iron mine waste, i.e., total of 79.55% and 71.31%, respectively, that are essential for carbonation process. Potential Ca/Mg/Fe silicates, oxides and carbonates have been identified, which was confirmed by the microstructure analysis. The limestone waste composed majorly of CaO (75.83%), which was mainly originated from calcite and akermanite minerals. The iron mine waste consisted of Fe2O3 (56.60%), mainly from magnetite and hematite, and CaO (10.74%) which was derived from anorthite, wollastonite and diopside. The gold mine waste was attributed to a lower cation content (total of 7.71%), associated mainly with mineral illite and chlorite-serpentine. The average capacity for carbon sequestration was between 7.73 and79.55%, which corresponds to 383.41 g, 94.85 g and 4.72 g CO2 that were potentially sequestered per kg of limestone, iron and gold mine waste, respectively. Therefore, it has been learned that the mine waste might be utilized as feedstock for mineral carbonation due to the availability of reactive silicate/oxide/carbonate minerals. Utilization of mine waste would be beneficial in light of waste restoration in most mining sites while tackling the issues of CO2 emission in mitigating the global climate change.
    Matched MeSH terms: Carbonates/analysis
  2. Mohammed AU, Aris AZ, Ramli MF, Isa NM, Arabi AS, Jabbo JN
    Environ Geochem Health, 2023 Jun;45(6):3891-3906.
    PMID: 36609946 DOI: 10.1007/s10653-022-01468-6
    Multiple interactions of geogenic and anthropogenic activities can trigger groundwater pollution in the tropical savanna watershed. These interactions and resultant contamination have been studied using applied geochemical modeling, conventional hydrochemical plots, and multivariate geochemometric methods, and the results are presented in this paper. The high alkalinity values recorded for the studied groundwater samples might emanate from the leaching of carbonate soil derived from limestone coupled with low rainfall and high temperature in the area. The principal component analysis (PCA) unveils three components with an eigenvalue > 1 and a total dataset variance of 67.37%; this implies that the temporary hardness of the groundwater and water-rock interaction with evaporite minerals (gypsum, halite, calcite, and trona) is the dominant factor affecting groundwater geochemistry. Likewise, the PCA revealed anthropogenic contamination by discharging [Formula: see text] [Formula: see text][Formula: see text] and [Formula: see text] from agricultural activities and probable sewage leakages. Hierarchical cluster analysis (HCA) also revealed three clusters; cluster I reflects the dissolution of gypsum and halite with a high elevated load of [Formula: see text] released by anthropogenic activities. However, cluster II exhibited high [Formula: see text] and [Formula: see text] loading in the groundwater from weathering of bicarbonate and sylvite minerals. Sulfate ([Formula: see text]) dominated cluster III mineralogy resulting from weathering of anhydrite. The three clusters in the Maiganga watershed indicated anhydrite, gypsum, and halite undersaturation. These results suggest that combined anthropogenic and natural processes in the study area are linked with saturation indexes that regulate the modification of groundwater quality.
    Matched MeSH terms: Carbonates/analysis
  3. Mohd Isha NS, Mohd Kusin F, Ahmad Kamal NM, Syed Hasan SNM, Molahid VLM
    Environ Geochem Health, 2021 May;43(5):2065-2080.
    PMID: 33392897 DOI: 10.1007/s10653-020-00784-z
    This paper attempts to evaluate the mineralogical and chemical composition of sedimentary limestone mine waste alongside its mineral carbonation potential. The limestone mine wastes were recovered as the waste materials after mining and crushing processes and were analyzed for mineral, major and trace metal elements. The major mineral composition discovered was calcite (CaCO3) and dolomite [CaMg(CO3)2], alongside other minerals such as bustamite [(Ca,Mn)SiO3] and akermanite (Ca2MgSi2O7). Calcium oxide constituted the greatest composition of major oxide components of between 72 and 82%. The presence of CaO facilitated the transformation of carbon dioxide into carbonate form, suggesting potential mineral carbonation of the mine waste material. Geochemical assessment indicated that mean metal(loid) concentrations were found in the order of Al > Fe > Sr > Pb > Mn > Zn > As > Cd > Cu > Ni > Cr > Co in which Cd, Pb and As exceeded some regulatory guideline values. Ecological risk assessment demonstrated that the mine wastes were majorly influenced by Cd as being classified having moderate risk. Geochemical indices depicted that Cd was moderately accumulated and highly enriched in some of the mine waste deposited areas. In conclusion, the limestone mine waste material has the potential for sequestering CO2; however, the presence of some trace metals could be another important aspect that needs to be considered. Therefore, it has been shown that limestone mine waste can be regarded as a valuable feedstock for mineral carbonation process. Despite this, the presence of metal(loid) elements should be of another concern to minimize potential ecological implication due to recovery of this waste material.
    Matched MeSH terms: Carbonates/analysis
  4. Brindha K, Paul R, Walter J, Tan ML, Singh MK
    Environ Geochem Health, 2020 Nov;42(11):3819-3839.
    PMID: 32601907 DOI: 10.1007/s10653-020-00637-9
    Monitoring the groundwater chemical composition and identifying the presence of pollutants is an integral part of any comprehensive groundwater management strategy. The present study was conducted in a part of West Tripura, northeast India, to investigate the presence and sources of trace metals in groundwater and the risk to human health due to direct ingestion of groundwater. Samples were collected from 68 locations twice a year from 2016 to 2018. Mixed Ca-Mg-HCO3, Ca-Cl and Ca-Mg-Cl were the main groundwater types. Hydrogeochemical methods showed groundwater mineralization due to (1) carbonate dissolution, (2) silicate weathering, (3) cation exchange processes and (4) anthropogenic sources. Occurrence of faecal coliforms increased in groundwater after monsoons. Nitrate and microbial contamination from wastewater infiltration were apparent. Iron, manganese, lead, cadmium and arsenic were above the drinking water limits prescribed by the Bureau of Indian Standards. Water quality index indicated 1.5% had poor, 8.7% had marginal, 16.2% had fair, 66.2% had good and 7.4% had excellent water quality. Correlation and principal component analysis reiterated the sources of major ions and trace metals identified from hydrogeochemical methods. Human exposure assessment suggests health risk due to high iron in groundwater. The presence of unsafe levels of trace metals in groundwater requires proper treatment measures before domestic use.
    Matched MeSH terms: Carbonates/analysis
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links