Displaying all 5 publications

Abstract:
Sort:
  1. Zakaria MA, Rajab NF, Chua EW, Selvarajah GT, Masre SF
    Cancer Invest, 2020 Sep;38(8-9):445-462.
    PMID: 32713210 DOI: 10.1080/07357907.2020.1802474
    Tissues become more rigid during tumorigenesis and have been identified as a driving factor for tumor growth. Here, we highlight the concept of tissue rigidity, contributing factors that increase tissue rigidity, and mechanisms that promote tumor growth initiated by increased tissue rigidity. Various factors lead to increased tissue rigidity, promoting tumor growth by activating focal adhesion kinase (FAK) and Rho-associated kinase (ROCK). Consequently, result in recruitment of cancer-associated fibroblasts (CAFs), epithelial-mesenchymal transition (EMT) and tumor protection from immunosurveillance. We also discussed the rationale for targeting tumor tissue rigidity and its potential for cancer treatment.
    Matched MeSH terms: Cancer-Associated Fibroblasts/pathology
  2. Musa M
    Adv Med Sci, 2020 Mar;65(1):163-169.
    PMID: 31972467 DOI: 10.1016/j.advms.2019.12.001
    Besides malignant cells, the tumour microenvironment consists of various stromal cells such as cancer-associated fibroblasts (CAFs) and myofibroblasts. Accumulation of heterogeneous populations of stromal cells in solid tumours is associated with lower survival rates and cancer recurrence in patients. Certain limitations presented by conventional experimental designs and techniques in cancer research have led to poor understanding of the fundamental basis of cancer niche. Recent developments in single-cell techniques allow more in-depth studies of the tumour microenvironment. Analyses at the single-cell level enables the detection of rare cell types, characterization of intra-tumour cellular heterogeneity and analysis of the lineage output of malignant cells. This subsequently, provides valuable insights on better diagnostic methods and treatment avenues for cancer. This review explores the recent advancements and applications of single-cell technologies in cancer research pertaining to the study of stromal fibroblasts in the microenvironment of solid tumours.
    Matched MeSH terms: Cancer-Associated Fibroblasts/pathology*
  3. Kumcu E, Unverdi H, Kaymaz E, Oral O, Turkbey D, Hucmenoglu S
    Malays J Pathol, 2018 Aug;40(2):137-142.
    PMID: 30173230
    INTRODUCTION: Breast cancer is still a serious health problem in 21st century and diagnosis, treatment and prognosis of this malignant disease are subject to many research. While cancer research has been focused on tumour cells primarily, recent studies showed that tumour stroma contribute to carcinogenesis as well as tumour cells. Especially fibroblasts adjacent to epithelial tumour cells are not ordinary fibroblasts and play the critical role. Studies showed that these cancer associated fibroblasts (CAFs) have different genetic profile and protein expression. One of the differently expressed molecules recently found is podoplanin. Podoplanin, utilised as a lymphatic endothelial marker, is found to be expressed in CAFs. The aim of this study is to evaluate the relationship between the stromal expression of podoplanin in invasive breast carcinoma and clinicopathological parameters.

    MATERIALS & METHODS: Podoplanin expression was evaluated immunohistochemically in 153 breast cancers. Tumours with ≥ 10% distinct cytoplasmic podoplanin staining in CAFs were considered as positive.

    RESULTS: In 65.3% of analysed tumours, podoplanin expression was found positive in CAFs. According to our results, podoplanin positive CAFs correlated significantly with tumour size (p= 0.012), tumour grade (p= 0.032) and cerbB2 score (p= 0.032).

    DISCUSSION: Our results suggest that podoplanin expression by CAFs could predict poor patient outcome in breast carcinoma.

    Matched MeSH terms: Cancer-Associated Fibroblasts/pathology
  4. Musa M, Ali A
    Future Oncol, 2020 Oct;16(29):2329-2344.
    PMID: 32687721 DOI: 10.2217/fon-2020-0384
    Accumulation of cancer-associated fibroblasts (CAFs) in the tumor microenvironment is associated with poor prognosis and recurrence of colorectal cancer (CRC). Despite their prominent roles in colorectal carcinogenesis, there is a lack of robust and specific markers to classify the heterogeneous and highly complex CAF populations. This has resulted in confusing and misleading definitions of CAFs in cancer niche. Advancements in molecular biology approaches have open doors to reliable CAF marker detection methods in various solid tumors. These discoveries would contribute to more efficient screening, monitoring and targeted therapy of CRC thus potentially will reduce cancer morbidity and mortality rates. This review highlights current scenarios, dilemma, translational potentials of CAF biomarker and future therapeutic applications involving CAF marker identification in CRC.
    Matched MeSH terms: Cancer-Associated Fibroblasts/pathology
  5. Cirillo N, Hassona Y, Celentano A, Lim KP, Manchella S, Parkinson EK, et al.
    Carcinogenesis, 2017 01;38(1):76-85.
    PMID: 27803052 DOI: 10.1093/carcin/bgw113
    The interrelationship between malignant epithelium and the underlying stroma is of fundamental importance in tumour development and progression. In the present study, we used cancer-associated fibroblasts (CAFs) derived from genetically unstable oral squamous cell carcinomas (GU-OSCC), tumours that are characterized by the loss of genes such as TP53 and p16INK4A and with extensive loss of heterozygosity, together with CAFs from their more genetically stable (GS) counterparts that have wild-type TP53 and p16INK4A and minimal loss of heterozygosity (GS-OSCC). Using a systems biology approach to interpret the genome-wide transcriptional profile of the CAFs, we show that transforming growth factor-β (TGF-β) family members not only had biological relevance in silico but also distinguished GU-OSCC-derived CAFs from GS-OSCC CAFs and fibroblasts from normal oral mucosa. In view of the close association between TGF-β family members, we examined the expression of TGF-β1 and TGF-β2 in the different fibroblast subtypes and showed increased levels of active TGF-β1 and TGF-β2 in CAFs from GU-OSCC. CAFs from GU-OSCC, but not GS-OSCC or normal fibroblasts, induced epithelial-mesenchymal transition and down-regulated a broad spectrum of cell adhesion molecules resulting in epithelial dis-cohesion and invasion of target keratinocytes in vitro in a TGF-β-dependent manner. The results demonstrate that the TGF-β family of cytokines secreted by CAFs derived from genotype-specific oral cancer (GU-OSCC) promote, at least in part, the malignant phenotype by weakening intercellular epithelial adhesion.
    Matched MeSH terms: Cancer-Associated Fibroblasts/pathology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links