Microalgae are considered promising feedstock for the production of biofuels and other bioactive compounds, yet there are still challenges on commercial applications of microalgae-based products. This review focuses on the economic analysis, environmental impact, and industrial potential of biofuels production from microalgae. The cost of biofuels production remains higher compared to conventional fuel sources. However, integration of biorefinery pathways with biofuels production for the recovery of value-added products (such as antioxidants, natural dyes, cosmetics, nutritional supplements, polyunsaturated fatty acids, and so forth) could substantially reduce the production costs. It also paves the way for sustainable energy resources by significantly reducing the emissions of CO2 , NOx , SOx , and heavy metals. Large-scale biofuels production has yet to be successfully commercialized with many roadblocks ahead and heavy competition with conventional fuel feedstock as well as technological aspects. One of the prominent challenges is to develop a cost-effective method to achieve high-density microalgal cultivation on an industrial scale. The biofuels industry should be boosted by Government's support in the form of subsidies and incentives, for addressing the pressing climate change issues, achieving sustainability, and energy security.
In recent years, environmental problems caused by the use of fossil fuels and the depletion of petroleum reserves have driven the world to adopt biodiesel as an alternative energy source to replace conventional petroleum-derived fuels because of biodiesel's clean and renewable nature. Biodiesel is conventionally produced in homogeneous, heterogeneous, and enzymatic catalysed processes, as well as by supercritical technology. All of these processes have their own limitations, such as wastewater generation and high energy consumption. In this context, the membrane reactor appears to be the perfect candidate to produce biodiesel because of its ability to overcome the limitations encountered by conventional production methods. Thus, the aim of this paper is to review the production of biodiesel with a membrane reactor by examining the fundamental concepts of the membrane reactor, its operating principles and the combination of membrane and catalyst in the catalytic membrane. In addition, the potential of functionalised carbon nanotubes to serve as catalysts while being incorporated into the membrane for transesterification is discussed. Furthermore, this paper will also discuss the effects of process parameters for transesterification in a membrane reactor and the advantages offered by membrane reactors for biodiesel production. This discussion is followed by some limitations faced in membrane technology. Nevertheless, based on the findings presented in this review, it is clear that the membrane reactor has the potential to be a breakthrough technology for the biodiesel industry.
Globally, around three billion people depend upon solid fuels such as firewood, dry animal dung, crop residues, or coal, and use traditional stoves for cooking and heating purposes. This solid fuel combustion causes indoor air pollution (IAP) and severely impairs health and the environment, especially in developing countries like Pakistan. A number of alternative household energy strategies can be adopted to mitigate IAP, such as using liquefied petroleum gas (LPG), natural gas, biogas, electric stoves, or improved cook stoves (ICS). In this study, we estimate the benefit-cost ratios and net present value of these interventions over a ten-year period in Pakistan. Annual costs include both fixed and operating costs, whereas benefits cover health, productivity gains, time savings, and fuel savings. We find that LPG has the highest benefit-cost ratio, followed by natural gas, while ICS has the lowest benefit-cost ratio. Electric stoves and biogas have moderate benefit-cost ratios that nevertheless exceed one. To maximize the return on cleaner burning technology, the government of Pakistan should consider encouraging the adoption of LPG, piped natural gas, and electric stoves as means to reduce IAP and adopt clean technologies.
Theory-based evaluation (TBE) is an effectiveness assessment technique that critically analyses the theory underlying an intervention. Whilst its use has been widely reported in the area of social programmes, it is less applied in the field of energy and climate change policy evaluations. This paper reports a recent study that has evaluated the effectiveness of the national biofuel policy (NBP) for the transport sector in Malaysia by adapting a TBE approach. Three evaluation criteria were derived from the official goals of the NBP, those are (i) improve sustainability and environmental friendliness, (ii) reduce fossil fuel dependency, and (iii) enhance stakeholders' welfare. The policy theory underlying the NBP has been reconstructed through critical examination of the policy and regulatory documents followed by a rigorous appraisal of the causal link within the policy theory through the application of scientific knowledge. This study has identified several weaknesses in the policy framework that may engender the policy to be ineffective. Experiences with the use of a TBE approach for policy evaluations are also shared in this report.