Displaying all 3 publications

Abstract:
Sort:
  1. Ling TC, Loong CK, Tan WS, Tey BT, Abdullah WM, Ariff A
    J Microbiol, 2004 Sep;42(3):228-32.
    PMID: 15459653
    In this paper, we investigated the development of a simplified and rapid primary capture step for the recovery of M13 bacteriophage from particulate-containing feedstock. M13 bacteriophage, carrying an insert, was propagated and subsequently purified by the application of both conventional multiple steps and expanded bed anion exchange chromatography. In the conventional method, precipitation was conducted with PEG/NaCl, and centrifugation was also performed. In the single step expanded bed anion exchange adsorption, UpFront FastLine 20 (20 mm i.d.) from UpFront Chromatography was used as the contactor, while 54 ml (Ho = 15 cm) of STREAMLINE DEAE (rho = 1.2 g/cm3) from Amersham Pharmacia Biotechnology was used as the anion exchanger. The performance of the two methods were evaluated, analysed, and compared. It was demonstrated that the purification of the M13 bacteriophage, using expanded bed anion exchange adsorption, yielded the higher recovery percentage, at 82.86%. The conventional multiple step method yielded the lower recovery percentage, 36.07%. The generic application of this integrated technique has also been assessed.
    Matched MeSH terms: Bacteriophage M13/isolation & purification*
  2. Yong SF, Ngeow YF, Tong YK, Ong JT
    Malays J Pathol, 2006 Dec;28(2):79-82.
    PMID: 18376795 MyJurnal
    Male-specific coliphages are often used as indicators of contamination by enteric viruses. These phages can be detected in water samples by plaque assays and by polymerase chain reaction. In this study, the M13 coliphage was used to develop a real-time PCR assay for the detection of male-specific DNA coliphages. The real-time PCR was found to have a reaction efficiency of 1.45 and detection limit of 10(-3) plaque forming units per reaction mix. Repeated amplification and melting curve analyses demonstrated high specificity and reproducibility of the real-time assay. Quantitative detection with the real-time PCR should allow rapid assessment of the level of viral contamination in water.
    Matched MeSH terms: Bacteriophage M13/isolation & purification*
  3. Monjezi R, Tey BT, Sieo CC, Tan WS
    PMID: 20538529 DOI: 10.1016/j.jchromb.2010.05.028
    M13 is a non-lytic filamentous bacteriophage (phage). It has been used widely in phage display technology for displaying foreign peptides, and also for studying macromolecule structures and interactions. Traditionally, this phage has been purified by cesium chloride (CsCl) density gradient ultracentrifugation which is highly laborious and time consuming. In the present study, a simple, rapid and efficient method for the purification of M13 based on anion exchange chromatography was established. A pre-packed SepFast Super Q column connected to a fast protein liquid chromatography (FPLC) system was employed to capture released phages in clarified Escherichia coli fermented broth. An average yield of 74% was obtained from a packed bed mode elution using citrate buffer (pH 4), containing 1.5 M NaCl at 1 ml/min flow rate. The purification process was shortened substantially to less than 2 h from 18 h in the conventional ultracentrifugation method. SDS-PAGE revealed that the purity of particles was comparable to that of CsCl gradient density ultracentrifugation method. Plaque forming assay showed that the purified phages were still infectious.
    Matched MeSH terms: Bacteriophage M13/isolation & purification*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links