Displaying publications 1 - 20 of 62 in total

Abstract:
Sort:
  1. Cameron JAP
    Med J Malaya, 1950;5.
    1. The importance of the mental and physical reactions of the amputee. 2. Ideal sites and the technique of amputations are discussed briefly. 3. Rehabilitation and training of the amputee is important if the best results are to be obtained. 4. Some of the special reasons for amputation are considered. 5. The component parts of an artificial limb and their alignment are outlined. 6. Special features in fitting limbs for women and children. 7. Some complications resulting from the wearing of an artificial limb are described. 8. Limb fitting in Malaya has its own peculiar difficulties which time and experience will rectify.
    Matched MeSH terms: Artificial Limbs
  2. Eshraghi A, Osman NA, Gholizadeh H, Ahmadian J, Rahmati B, Abas WA
    Sci Rep, 2013;3:2270.
    PMID: 23881340 DOI: 10.1038/srep02270
    Individuals with lower limb amputation need a secure suspension system for their prosthetic devices. A new coupling system was developed that is capable of suspending the prosthesis. The system's safety is ensured through an acoustic alarm system. This article explains how the system works and provides an in vivo evaluation of the device with regard to pistoning during walking. The system was designed to be used with silicone liners and is based on the requirements of prosthetic suspension systems. Mechanical testing was performed using a universal testing machine. The pistoning during walking was measured using a motion analysis system. The new coupling device produced significantly less pistoning compared to a common suspension system (pin/lock). The safety alarm system would buzz if the suspension was going to fail. The new coupling system could securely suspend the prostheses in transtibial amputees and produced less vertical movement than the pin/lock system.
    Matched MeSH terms: Artificial Limbs*
  3. Hashim NA, Abd Razak NA, Abu Osman NA, Gholizadeh H
    Proc Inst Mech Eng H, 2018 Jan;232(1):3-11.
    PMID: 29199518 DOI: 10.1177/0954411917744585
    Body-powered prostheses are known for their advantages of cost, reliability, training period, maintenance, and proprioceptive feedback. This study primarily aims to analyze the work related to the improvement of upper limb body-powered prostheses prior to 2016. A systematic review conducted via the search of the Web of Science electronic database, Google Scholar, and Google Patents identified 155 papers from 1921 to 2016. Sackett's initial rules of evidence were used to determine the levels of evidence, and only papers categorized in the design and development category and patents were analyzed. A total of 40 papers in the sixth level of "Design and Development" of an upper limb body-powered prosthesis were found. Approximately 81% were categorized under mechanical alteration. Most papers were patent-type documents (48%), with the Journal of Rehabilitation Research and Development publishing most of the articles related to the design and development of body-powered prostheses. Papers in the scope of the study were published once every 3 years in almost a century, proving that only a few studies were conducted to improve body-powered arms compared with myoelectric technology. Further research should be carried out mainly in areas that have received less attention.
    Matched MeSH terms: Artificial Limbs*
  4. Abdul Wahit MA, Ahmad SA, Marhaban MH, Wada C, Izhar LI
    Sensors (Basel), 2020 Jul 27;20(15).
    PMID: 32727150 DOI: 10.3390/s20154174
    Trans-radial prosthesis is a wearable device that intends to help amputees under the elbow to replace the function of the missing anatomical segment that resembles an actual human hand. However, there are some challenging aspects faced mainly on the robot hand structural design itself. Improvements are needed as this is closely related to structure efficiency. This paper proposes a robot hand structure with improved features (four-bar linkage mechanism) to overcome the deficiency of using the cable-driven actuated mechanism that leads to less structure durability and inaccurate motion range. Our proposed robot hand structure also took into account the existing design problems such as bulky structure, unindividual actuated finger, incomplete fingers and a lack of finger joints compared to the actual finger in its design. This paper presents the improvements achieved by applying the proposed design such as the use of a four-bar linkage mechanism instead of using the cable-driven mechanism, the size of an average human hand, five-fingers with completed joints where each finger is moved by motor individually, joint protection using a mechanical stopper, detachable finger structure from the palm frame, a structure that has sufficient durability for everyday use and an easy to fabricate structure using 3D printing technology. The four-bar linkage mechanism is the use of the solid linkage that connects the actuator with the structure to allow the structure to move. The durability was investigated using static analysis simulation. The structural details and simulation results were validated through motion capture analysis and load test. The motion analyses towards the 3D printed robot structure show 70-98% similar motion range capability to the designed structure in the CAD software, and it can withstand up to 1.6 kg load in the simulation and the real test. The improved robot hand structure with optimum durability for prosthetic uses was successfully developed.
    Matched MeSH terms: Artificial Limbs*
  5. Afiqah Hamzah N, Razak NAA, Sayuti Ab Karim M, Gholizadeh H
    Proc Inst Mech Eng H, 2021 Dec;235(12):1359-1374.
    PMID: 34304625 DOI: 10.1177/09544119211035200
    The development of the CAD/CAM (Computer-aided design and computer-aided manufacturing) system has globally changed the fabrication and delivery of prosthetics and orthotics. Furthermore, since the introduction of CAD/CAM in the 1980s, many successful CAD/CAM system are available in the market today. However, less than 20% of amputees have access to digital fabrication technology and large portion of the amputees are from the developing countries. This review designed to examine selected studies from 1980 to 2019 on CAD/CAM systems in the production of transtibial prosthetic sockets. A review was conducted based on articles gathered from Web of Science, Pubmed and Science Direct. From the findings, 92 articles found related to CAD/CAM-derived transtibial prosthetic socket (TPS). After a further screening of the articles, 20 studies were chosen and only one study was done in a developing country. The results showed an increase interest in CAD/CAM application in Transtibial prosthetic socket (TPS) production for both developed and developing countries, yet the technology has not fully utilised in the developing countries. Factors such as resources, accessibility, knowledge-gap and lack of experienced prosthetists remain the major causes of the lack of CAD/CAM system studies. Large-scale trials are required to employ digital fabrication in the developing regions, consequently advancing the production of high-quality CAD-CAM-derived TPS where most prosthetic and orthotics are needed.
    Matched MeSH terms: Artificial Limbs*
  6. Mahat NS, Shetty NY, Kohli S, Jamayet NB, Patil P
    Evid Based Dent, 2023 Sep;24(3):142.
    PMID: 37369705 DOI: 10.1038/s41432-023-00904-5
    OBJECTIVE: To analyze the clinical outcomes of implant-supported prostheses and tooth-supported fixed prostheses, fabricated from digital and conventional impression.

    MATERIALS AND METHODS: The literature search was carried out on two electronic databases (PubMed and Cochrane Library). Randomized controlled trials (RCT) published from January 2011 to September 2022 were included. The bias risk was evaluated using Cochrane Risk of Bias Tool 2.0. Further screening was done for meta-analysis according to modified Newcastle-Ottawa scoring criteria. Forest plot was generated using a statistical method of inverse variance of random effect with 95% confidence interval.

    RESULTS: A total of 8 randomized controlled trials were included for systematic review out of which four studies were based on tooth-supported fixed prosthesis and remaining four were based on implant-supported prosthesis. Further screening was conducted and three studies were eligible for meta-analysis. Tooth-supported fixed prosthesis fabricated from digital impression showed no significant difference in the marginal fit in any region measured, except for occlusal region where conventional impression showed more favorable marginal fit. Implant-supported prosthesis fabricated from digital impression showed survival rates ranging from 97.3 to 100% and there was no statistically significant difference in marginal bone loss (p = 0.14).

    CONCLUSION: Implant-supported prostheses fabricated from digital and conventional impressions show no significant differences in their clinical outcomes. Tooth-supported fixed prostheses fabricated from digital impression have shown favorable findings in terms of marginal fit. Despite that, there is still lack of clinical trials with larger sample size and longer follow-up periods. Future studies that fulfill these two criteria are deemed necessary.

    Matched MeSH terms: Artificial Limbs*
  7. Nik Zainuddin NAM, Abd Razak NA, Ab Karim MS
    Proc Inst Mech Eng H, 2023 Jun;237(6):741-748.
    PMID: 37131337 DOI: 10.1177/09544119231171787
    Composite materials used in the prosthetic and orthotic fields have helped improve the fabrication of sockets. Laminated sockets proved to be stronger than conventional thermoplastic sockets. The internal surface of a laminated socket plays an important role in patient comfort and is influenced by the material used to fabricate the socket. This study analyzes the internal surface profile of five different materials, that is, Dacron felt, fiberglass, Perlon stockinette, polyester stockinette, and elastic stockinette. All sockets were fabricated using an acrylic resin mix with hardener powder at a ratio of 100:3. The internal surface of the sockets was tested using the Mitutoyo SurfTest SJ-210 series for 20 trials. The overall Ra values were 2.318, 2.380, 2.682, 2.722, and 3.750 µm for fiberglass, polyester, Perlon, elastic stockinette, and Dacron felt. Dacron felt yielded the lowest Ra value, thus, producing the smoothest internal surface but requiring high skill and the correct technique during the fabrication of a laminated socket. Fiberglass is considered the best material for the internal surface despite not producing the lowest value individually but overall is the lowest and most consistent, indicating that it is easy to use to laminate prosthetic sockets.
    Matched MeSH terms: Artificial Limbs*
  8. Ramlee MH, Ammarullah MI, Mohd Sukri NS, Faidzul Hassan NS, Baharuddin MH, Abdul Kadir MR
    Sci Rep, 2024 Mar 21;14(1):6842.
    PMID: 38514731 DOI: 10.1038/s41598-024-57454-8
    Previous research has primarily focused on pre-processing parameters such as design, material selection, and printing techniques to improve the strength of 3D-printed prosthetic leg sockets. However, these methods fail to address the major challenges that arise post-printing, namely failures at the distal end of the socket and susceptibility to shear failure. Addressing this gap, the study aims to enhance the mechanical properties of 3D-printed prosthetic leg sockets through post-processing techniques. Fifteen PLA + prosthetic leg sockets are fabricated and reinforced with four materials: carbon fiber, carbon-Kevlar fiber, fiberglass, and cement. Mechanical and microstructural properties of the sockets are evaluated through axial compression testing and scanning electron microscopy (SEM). Results highlight superior attributes of cement-reinforced sockets, exhibiting significantly higher yield strength (up to 89.57% more than counterparts) and higher Young's modulus (up to 76.15% greater). SEM reveals correlations between microstructural properties and socket strength. These findings deepen the comprehension of 3D-printed prosthetic leg socket post-processing, presenting optimization prospects. Future research can focus on refining fabrication techniques, exploring alternative reinforcement materials, and investigating the long-term durability and functionality of post-processed 3D-printed prosthetic leg sockets.
    Matched MeSH terms: Artificial Limbs*
  9. Al-Fakih EA, Abu Osman NA, Mahmad Adikan FR
    Sensors (Basel), 2016 Jul 20;16(7).
    PMID: 27447646 DOI: 10.3390/s16071119
    The distribution of interface stresses between the residual limb and prosthetic socket of a transtibial amputee has been considered as a direct indicator of the socket quality fit and comfort. Therefore, researchers have been very interested in quantifying these interface stresses in order to evaluate the extent of any potential damage caused by the socket to the residual limb tissues. During the past 50 years a variety of measurement techniques have been employed in an effort to identify sites of excessive stresses which may lead to skin breakdown, compare stress distributions in various socket designs, and evaluate interface cushioning and suspension systems, among others. The outcomes of such measurement techniques have contributed to improving the design and fitting of transtibial sockets. This article aims to review the operating principles, advantages, and disadvantages of conventional and emerging techniques used for interface stress measurements inside transtibial sockets. It also reviews and discusses the evolution of different socket concepts and interface stress investigations conducted in the past five decades, providing valuable insights into the latest trends in socket designs and the crucial considerations for effective stress measurement tools that lead to a functional prosthetic socket.
    Matched MeSH terms: Artificial Limbs*
  10. Hashim NM, Che Daud AZ, Ibrahim AH, Ab Majid MH, Mohd Ghazali MN, Abdul Razak MM, et al.
    Prosthet Orthot Int, 2024 Jan 01;48(1):89-99.
    PMID: 37639558 DOI: 10.1097/PXR.0000000000000270
    BACKGROUND: An excellent validated and reliable instrument is paramount in holistically evaluating the prosthetic and orthotic (P&O) service, encompassing functional outcomes, health-related quality of life (HRQoL), and patient satisfaction with devices and service.

    OBJECTIVE: To perform a translation and cross-cultural adaptation of 3 modules of the Orthotics and Prosthetics Users' Survey (OPUS): (1) lower-extremity functional status (LEFS), (2) client satisfaction with device and services (CSDS), and (3) HRQoL in Malay language, and analyze its psychometric properties.

    STUDY DESIGN: Translation and validation study.

    METHODS: This translation process consisted of 4 phases: (1) a forward-backward translation, (2) content and face validity by utilizing content and face validity indices, (3) pilot testing and psychometric analysis using exploratory factor analysis, and (4) test-retest reliability.

    RESULTS: One item from OPUS Health Quality of Life Index-Malay pilot version, 5 items from OPUS LEFS-Malay pilot version, and 4 items of OPUS Satisfaction with Device and Services-Malay pilot version were deleted because of poor factor loading of <0.6. The final version of Modified OPUS HRQoL-M, Modified OPUS LEFS-M, and Modified OPUS CSDS-M consisted of 22 items, 15 items, and 17 items, respectively. The final versions of all 3 Modified OPUS Malay version possess good internal consistency of 0.854, 0.927, and 0.98, and intraclass correlation of 0.773, 0.871, and 0.821, respectively .

    CONCLUSION: Modified OPUS HRQoL-M, Modified OPUS LEFS-M, and Modified OPUS CSDS-M are valid and reliable instruments to be adopted into the local Malaysia population.

    Matched MeSH terms: Artificial Limbs*
  11. Khamis T, Khamis AA, Al Kouzbary M, Al Kouzbary H, Mokayed H, AbdRazak NA, et al.
    Artif Intell Med, 2024 Oct;156:102966.
    PMID: 39197376 DOI: 10.1016/j.artmed.2024.102966
    This comprehensive systematic review critically analyzes the current progress and challenges in automating transtibial prosthesis alignment. The manual identification of alignment changes in prostheses has been found to lack reliability, necessitating the development of automated processes. Through a rigorous systematic search across major electronic databases, this review includes the highly relevant studies out of an initial pool of 2111 records. The findings highlight the urgent need for automated alignment systems in individuals with transtibial amputation. The selected studies represent cutting-edge research, employing diverse approaches such as advanced machine learning algorithms and innovative alignment tools, to automate the detection and adjustment of prosthesis alignment. Collectively, this review emphasizes the immense potential of automated transtibial prosthesis alignment systems to enhance alignment accuracy and significantly reduce human error. Furthermore, it identifies important limitations in the reviewed studies, serving as a catalyst for future research to address these gaps and explore alternative machine learning algorithms. The insights derived from this systematic review provide valuable guidance for researchers, clinicians, and developers aiming to propel the field of automated transtibial prosthesis alignment forward.
    Matched MeSH terms: Artificial Limbs*
  12. El-Sayed AM, Hamzaid NA, Abu Osman NA
    Sensors (Basel), 2014;14(12):23724-41.
    PMID: 25513823 DOI: 10.3390/s141223724
    Alternative sensory systems for the development of prosthetic knees are being increasingly highlighted nowadays, due to the rapid advancements in the field of lower limb prosthetics. This study presents the use of piezoelectric bimorphs as in-socket sensors for transfemoral amputees. An Instron machine was used in the calibration procedure and the corresponding output data were further analyzed to determine the static and dynamic characteristics of the piezoelectric bimorph. The piezoelectric bimorph showed appropriate static operating range, repeatability, hysteresis, and frequency response for application in lower prosthesis, with a force range of 0-100 N. To further validate this finding, an experiment was conducted with a single transfemoral amputee subject to measure the stump/socket pressure using the piezoelectric bimorph embedded inside the socket. The results showed that a maximum interface pressure of about 27 kPa occurred at the anterior proximal site compared to the anterior distal and posterior sites, consistent with values published in other studies. This paper highlighted the capacity of piezoelectric bimorphs to perform as in-socket sensors for transfemoral amputees. However, further experiments are recommended to be conducted with different amputees with different socket types.
    Matched MeSH terms: Artificial Limbs*
  13. Gholizadeh H, Abu Osman NA, Eshraghi A, Arifin N, Chung TY
    Prosthet Orthot Int, 2016 Aug;40(4):509-16.
    PMID: 25583929 DOI: 10.1177/0309364614564022
    BACKGROUND: This article describes a total surface bearing prosthetic socket for a patient (25-year-old female) with a bulbous stump.

    CASE DESCRIPTION AND METHODS: The subject had unstable excessive soft tissue at the distal end of the residuum. After 2 years of prosthetic use, she experienced several problems, including pain in the residual limb and knee joint. Pressure distribution was evaluated during ambulation. We also designed a total surface bearing socket with Velcro as suspension system to distribute the load evenly on the residual limb, and to facilitate donning procedure.

    FINDINGS AND OUTCOMES: The main site of weight bearing in the old prosthesis (patellar tendon bearing) was anterior proximal region of the residual limb, especially the patellar tendon. The pressure was almost 10 times higher than the distal region during level walking. Pressures were distributed more evenly with the total surface bearing socket design, and the donning was much easier.

    CONCLUSION: Pressure distribution within the socket could be affected by socket design and suspension system. Using the total surface bearing socket and Velcro as suspension system might facilitate donning of prosthesis and reduce traction at the end of residual limb during the swing phase of gait.

    CLINICAL RELEVANCE: Proper socket design and suspension system based on the amputees' need can facilitate rehabilitation process and lead to the amputee's satisfaction. The pressure is distributed more uniformly over the residual limb by the total surface bearing socket compared to the patellar tendon bearing socket for lower limb amputees with unusual stump shape.

    Matched MeSH terms: Artificial Limbs*
  14. Pirouzi G, Abu Osman NA, Oshkour AA, Ali S, Gholizadeh H, Abas WA
    Sensors (Basel), 2014;14(9):16754-65.
    PMID: 25207872 DOI: 10.3390/s140916754
    The suspension system and socket fitting of artificial limbs have major roles and vital effects on the comfort, mobility, and satisfaction of amputees. This paper introduces a new pneumatic suspension system that overcomes the drawbacks of current suspension systems in donning and doffing, change in volume during daily activities, and pressure distribution in the socket-stump interface. An air pneumatic suspension system (APSS) for total-contact sockets was designed and developed. Pistoning and pressure distribution in the socket-stump interface were tested for the new APSS. More than 95% of the area between each prosthetic socket and liner was measured using a Tekscan F-Scan pressure measurement which has developed matrix-based pressure sensing systems. The variance in pressure around the stump was 8.76 kPa. APSS exhibits less pressure concentration around the stump, improved pressure distribution, easy donning and doffing, adjustability to remain fitted to the socket during daily activities, and more adaptability to the changes in stump volume. The volume changes were adjusted by utility of air pressure sensor. The vertical displacement point and reliability of suspension were assessed using a photographic method. The optimum pressure in every level of loading weight was 55 kPa, and the maximum displacement was 6 mm when 90 N of weight was loaded.
    Matched MeSH terms: Artificial Limbs*
  15. Arifin N, Abu Osman NA, Ali S, Gholizadeh H, Abas WA
    ScientificWorldJournal, 2014;2014:856279.
    PMID: 25003155 DOI: 10.1155/2014/856279
    This study aimed to evaluate the effects of prosthetic foot types on the postural stability among transtibial amputees when standing on different support surfaces.
    Matched MeSH terms: Artificial Limbs*
  16. Pirouzi G, Abu Osman NA, Eshraghi A, Ali S, Gholizadeh H, Wan Abas WA
    ScientificWorldJournal, 2014;2014:849073.
    PMID: 25197716 DOI: 10.1155/2014/849073
    Socket is an important part of every prosthetic limb as an interface between the residual limb and prosthetic components. Biomechanics of socket-residual limb interface, especially the pressure and force distribution, have effect on patient satisfaction and function. This paper aimed to review and evaluate studies conducted in the last decades on the design of socket, in-socket interface pressure measurement, and socket biomechanics. Literature was searched to find related keywords with transtibial amputation, socket-residual limb interface, socket measurement, socket design, modeling, computational modeling, and suspension system. In accordance with the selection criteria, 19 articles were selected for further analysis. It was revealed that pressure and stress have been studied in the last decaeds, but quantitative evaluations remain inapplicable in clinical settings. This study also illustrates prevailing systems, which may facilitate improvements in socket design for improved quality of life for individuals ambulating with transtibial prosthesis. It is hoped that the review will better facilitate the understanding and determine the clinical relevance of quantitative evaluations.
    Matched MeSH terms: Artificial Limbs*
  17. Gholizadeh H, Abu Osman NA, Eshraghi A, Ali S
    Am J Phys Med Rehabil, 2014 Sep;93(9):809-23.
    PMID: 24743451 DOI: 10.1097/PHM.0000000000000094
    The purpose of this study was to find the scientific evidence pertaining to various transfemoral suspension systems to provide selection criteria for clinicians. To this end, databases of PubMed, Web of Science, and ScienceDirect were explored. The following key words, as well as their combinations and synonyms, were used for the search: transfemoral prosthesis, prosthetic suspension, lower limb prosthesis, above-knee prosthesis, prosthetic liner, transfemoral, and prosthetic socket. The study design, research instrument, sampling method, outcome measures, and protocols of articles were reviewed. On the basis of the selection criteria, 16 articles (11 prospective studies and 5 surveys) were reviewed. The main causes of reluctance to prosthesis, aside from energy expenditure, were socket-related problems such as discomfort, perspiration, and skin problems. Osseointegration was a suspension option, yet it is rarely applied because of several drawbacks, such as extended rehabilitation process, risk for fracture, and infection along with excessive cost. In conclusion, no clinical evidence was found as a "standard" system of suspension and socket design for all transfemoral amputees. However, among various suspension systems for transfemoral amputees, the soft insert or double socket was favored by most users in terms of function and comfort.
    Matched MeSH terms: Artificial Limbs*
  18. Arifin N, Abu Osman NA, Ali S, Wan Abas WA
    Biomed Eng Online, 2014;13(1):23.
    PMID: 24597518 DOI: 10.1186/1475-925X-13-23
    Achieving independent upright posture has known to be one of the main goals in rehabilitation following lower limb amputation. The purpose of this study was to compare postural steadiness of below knee amputees with visual alterations while wearing three different prosthetic feet.
    Matched MeSH terms: Artificial Limbs*
  19. Gholizadeh H, Abu Osman NA, Eshraghi A, Ali S, Razak NA
    Clin Biomech (Bristol, Avon), 2014 Jan;29(1):87-97.
    PMID: 24315710 DOI: 10.1016/j.clinbiomech.2013.10.013
    Today a number of prosthetic suspension systems are available for transtibial amputees. Consideration of an appropriate suspension system can ensure that amputee's functional needs are satisfied. The higher the insight to suspension systems, the easier would be the selection for prosthetists. This review attempted to find scientific evidence pertaining to various transtibial suspension systems to provide selection criteria for clinicians.
    Matched MeSH terms: Artificial Limbs*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links