Displaying all 19 publications

Abstract:
Sort:
  1. Primus PS, Wu CH, Kao CL, Choo YM
    Nat Prod Res, 2024 Apr;38(8):1406-1413.
    PMID: 36416441 DOI: 10.1080/14786419.2022.2147932
    Two new bisanthraquinones, glabraquinone A and B (1-2) were isolated from the root of Prismatomeris glabra (Korth.) Valeton. In addition to the new glabraquinones, six known anthraquinones, that is, 1-hydroxy-2-methoxy-6-methylanthraquinone (3), 1,2-dimethoxy-7-methylanthraquinone (4), lucidin (5), nordamnacanthal (6), damnacanthal (7) and 2-carboxaldehyde-3-hydroxyanthraquinone (8)) and an aromatic compound, that is, catechol diethyl ether (9) were isolated and characterized in this study. Compounds 1, 4 and 9 showed mild activity, reducing N2A cell viability to 77%, 82% and 77%, respectively, in anti-neuroblastoma assay.
    Matched MeSH terms: Anthraquinones/pharmacology
  2. Chua HM, Moshawih S, Goh HP, Ming LC, Kifli N
    PLoS One, 2023;18(9):e0290948.
    PMID: 37656730 DOI: 10.1371/journal.pone.0290948
    There is still unmet medical need in cancer treatment mainly due to drug resistance and adverse drug events. Therefore, the search for better drugs is essential. Computer-aided drug design (CADD) and discovery tools are useful to streamline the lengthy and costly drug development process. Anthraquinones are a group of naturally occurring compounds with unique scaffold that exert various biological properties including anticancer activities. This protocol describes a systematic review that provide insights into the computer-aided drug design and discovery based on anthraquinone scaffold for cancer treatment. It was prepared in accordance with the "Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 guidelines, and published in the "International prospective register of systematic reviews" database (PROSPERO: CRD42023432904). Search strategies will be developed based on the combination of relevant keywords and executed in PubMed, Scopus, Web of Science and MedRxiv. Only original studies that employed CADD as primary tool in virtual screening for the purpose of designing or discovering anti-cancer drugs involving anthraquinone scaffold published in English language will be included. Two independent reviewers will be involved to screen and select the papers, extract the data and assess the risk of bias. Apart from exploring the trends and types of CADD methods used, the target proteins of these compounds in cancer treatment will also be revealed in this review. It is believed that the outcome of this study could be utilized to support the ongoing research in similar area with better quality and greater probability of success, consequently optimizing the resources in subsequent in vitro, in vivo, non-clinical and clinical development. It will also serve as an evidence based scientific guide for new research to design novel anthraquinone-derived drug with improved efficacy and safety profile for cancer treatment.
    Matched MeSH terms: Anthraquinones/pharmacology
  3. Osman CP, Ismail NH, Ahmad R, Ahmat N, Awang K, Jaafar FM
    Molecules, 2010;15(10):7218-26.
    PMID: 20966871 DOI: 10.3390/molecules15107218
    Dichloromethane root extract of Rennellia elliptica Korth. showed strong inhibition of Plasmodium falciparum growth in vitro with an IC₅₀ value of 4.04 µg/mL. A phytochemical study of the dichloromethane root extract has led to the isolation and characterization of a new anthraquinone, 1,2-dimethoxy-6-methyl-9,10-anthraquinone (1), and ten known anthraquinones: 1-hydroxy-2-methoxy-6-methyl-9,10-anthraquinone (2), nordamnacanthal (3), 2-formyl-3-hydroxy-9,10-anthraquinone (4), damnacanthal (5), lucidin-ω-methyl ether (6), 3-hydroxy-2-methyl-9,10-anthraquinone (7), rubiadin (8), 3-hydroxy-2-methoxy-6-methyl-9,10-anthraquinone (9), rubiadin-1-methyl ether (10) and 3-hydroxy-2-hydroxymethyl-9,10-anthraquinone (11). Structural elucidation of all compounds was accomplished by modern spectroscopic methods, notably 1D and 2D NMR, IR, UV and HREIMS. The new anthraquinone 1, 2-formyl-3-hydroxy-9,10-anthraquinone (4) and 3-hydroxy-2-methyl-9,10-anthraquinone (7) possess strong antiplasmodial activity, with IC₅₀ values of 1.10, 0.63 and 0.34 µM, respectively.
    Matched MeSH terms: Anthraquinones/pharmacology*
  4. Akhtar MN, Zareen S, Yeap SK, Ho WY, Lo KM, Hasan A, et al.
    Molecules, 2013 Aug 20;18(8):10042-55.
    PMID: 23966087 DOI: 10.3390/molecules180810042
    Naturally occurring anthraquinones, damnacanthal (1) and nordamnacanthal (2) were synthesized with modified reaction steps and investigated for their cytotoxicity against the MCF-7 and K-562 cancer cell lines, respectively. Intermediate analogues 2-bromomethyl-1,3-dimethoxyanthraquinone (5, IC50 = 5.70 ± 0.21 and 8.50 ± 1.18 mg/mL), 2-hydroxymethyl-1,3-dimethoxyanthraquinone (6, IC50 = 12.10 ± 0.14 and 14.00 ± 2.13), 2-formyl-1,3-dimethoxyantharquinone (7, IC50 = 13.10 ± 1.02 and 14.80 ± 0.74), 1,3-dimethoxy-2-methylanthraquinone (4, IC50 = 9.40 ± 3.51 and 28.40 ± 2.33), and 1,3-dihydroxy-2-methylanthraquinone (3, IC50 = 25.60 ± 0.42 and 28.40 ± 0.79) also exhibited moderate cytotoxicity against MCF-7 and K-562 cancer cell lines, respectively. Other structurally related compounds like 1,3-dihydroxyanthraquinone (13a, IC50 = 19.70 ± 0.35 and 14.50 ± 1.28), 1,3-dimethoxyanthraquinone (13b, IC50 = 6.50 ± 0.66 and 5.90 ± 0.95) were also showed good cytotoxicity. The target compound damnacanthal (1) was found to be the most cytotoxic against the MCF-7 and K-562 cancer cell lines, with IC50 values of 3.80 ± 0.57 and 5.50 ± 1.26, respectively. The structures of all compounds were elucidated with the help of detailed spectroscopic techniques.
    Matched MeSH terms: Anthraquinones/pharmacology
  5. Chee CW, Mohd Hashim N, Nor Rashid N
    Chem Biol Interact, 2024 Apr 01;392:110928.
    PMID: 38423379 DOI: 10.1016/j.cbi.2024.110928
    There is an increasing demand for anticancer agent in treating colorectal cancer (CRC) with frequently mutated TP53 and KRAS genes. Phytochemical compounds are suitable as chemoprevention for CRC since dietary factor is a major risk factor. Anthraquinones from Morinda citrifolia L. were previously reported with various pharmacological properties. Various in vitro experiments were conducted to investigate the effects of two anthraquinones: damnacanthal and morindone on the cell proliferation, cell cycle, apoptosis, gene expression and protein expression in two CRC cells: HCT116 and HT29. Real-time monitoring of CRC cells showed that both anthraquinones exerted significant anti-proliferative effects in a dose- and time-dependent manner. Next, cell cycle analysis revealed an increase in the percentage of CRC cells in the G1 phase under anthraquinones treatment. Fluorescence microscopy also showed an increment of apoptotic cells under anthraquinones' treatment. siRNA transfection was conducted to evaluate the mediating effect of gene knockdown on mutated TP53 and KRAS in CRC cells. Before transfection, qRT-PCR analysis showed that only morindone downregulated the gene expression of mutated TP53 and KRAS and then further downregulated them after transfection. Both damnacanthal and morindone treatments further downregulated the expression of these two genes but upregulated at the protein expression level. Furthermore, gene knockdown also sensitised CRC cells to both damnacanthal and morindone treatments, resulting in lowered IC50 values. The accumulation of cells at the G1 phase was reduced after gene knockdown but increased after damnacanthal and morindone treatments. In addition, gene knockdown has increased the number of apoptotic cells in both cell lines and further increment was observed after anthraquinone treatment. In conclusion, morindone could be a competitive therapeutic agent in CRC by exhibiting multiple mechanism of anti-cancer actions.
    Matched MeSH terms: Anthraquinones/pharmacology
  6. Nor SM, Sukari MA, Azziz SS, Fah WC, Alimon H, Juhan SF
    Molecules, 2013 Jul 08;18(7):8046-62.
    PMID: 23884135 DOI: 10.3390/molecules18078046
    Aminoanthraquinones were successfully synthesized via two reaction steps. 1,4-Dihydroxyanthraquinone (1) was first subjected to methylation, reduction and acylation to give an excellent yield of anthracene-1,4-dione (3), 1,4-dimethoxyanthracene-9,10-dione (5) and 9,10-dioxo-9,10-dihydroanthracene-1,4-diyl diacetate (7). Treatment of 1, 3, 5 and 7 with BuNH2 in the presence of PhI(OAc)2 as catalyst produced seven aminoanthraquinone derivatives 1a, b, 3a, and 5a-d. Amination of 3 and 5 afforded three new aminoanthraquinones, namely 2-(butylamino)anthracene-1,4-dione (3a), 2-(butylamino)anthracene-9,10-dione (5a) and 2,3-(dibutylamino)anthracene-9,10-dione (5b). All newly synthesised aminoanthraquinones were examined for their cytotoxic activity against MCF-7 (estrogen receptor positive human breast) and Hep-G2 (human hepatocellular liver carcinoma) cancer cells using MTT assay. Aminoanthraquinones 3a, 5a and 5b exhibited strong cytotoxicity towards both cancer cell lines (IC50 1.1-13.0 µg/mL).
    Matched MeSH terms: Anthraquinones/pharmacology*
  7. Ee GC, Wen YP, Sukari MA, Go R, Lee HL
    Nat Prod Res, 2009;23(14):1322-9.
    PMID: 19735047 DOI: 10.1080/14786410902753138
    An investigation of Morinda citrifolia roots afforded a new anthraquinone, 2-ethoxy-1-hydroxyanthraquinone (1), along with five other known anthraquinones: 1-hydroxy-2-methylanthraquinone (2), damnacanthal (3), nordamnacanthal (4), 2-formyl-1-hydroxyanthraquinone (5) and morindone-6-methyl-ether (6). This is the first report on the isolation of morindone-6-methyl-ether (6) from this plant. The structures of these compounds were elucidated based on spectroscopic analyses such as NMR, MS and IR. Biological evaluation of five pure compounds and all the extracts against the larvae of Aedes aegypti indicated 1-hydroxy-2-methylanthraquinone (2) and damnacanthal (3) were the extracts to exhibit promising larvicidal activities.
    Matched MeSH terms: Anthraquinones/pharmacology
  8. Watroly MN, Sekar M, Fuloria S, Gan SH, Jeyabalan S, Wu YS, et al.
    Drug Des Devel Ther, 2021;15:4527-4549.
    PMID: 34764636 DOI: 10.2147/DDDT.S338548
    Anthraquinones (AQs) are found in a variety of consumer products, including foods, nutritional supplements, drugs, and traditional medicines, and have a wide range of pharmacological actions. Rubiadin, a 1,3-dihydroxy-2-methyl anthraquinone, primarily originates from Rubia cordifolia Linn (Rubiaceae). It was first discovered in 1981 and has been reported for many biological activities. However, no review has been reported so far to create awareness about this molecule and its role in future drug discovery. Therefore, the present review aimed to provide comprehensive evidence of Rubiadin's phytochemistry, biosynthesis, physicochemical properties, biological properties and therapeutic potential. Relevant literature was gathered from numerous scientific databases including PubMed, ScienceDirect, Scopus and Google Scholar between 1981 and up-to-date. The distribution of Rubiadin in numerous medicinal plants, as well as its method of isolation, synthesis, characterisation, physiochemical properties and possible biosynthesis pathways, was extensively covered in this review. Following a rigorous screening and tabulating, a thorough description of Rubiadin's biological properties was gathered, which were based on scientific evidences. Rubiadin fits all five of Lipinski's rule for drug-likeness properties. Then, the in depth physiochemical characteristics of Rubiadin were investigated. The simple technique for Rubiadin's isolation from R. cordifolia and the procedure of synthesis was described. Rubiadin is also biosynthesized via the polyketide and chorismate/o-succinylbenzoic acid pathways. Rubiadin is a powerful molecule with anticancer, antiosteoporotic, hepatoprotective, neuroprotective, anti-inflammatory, antidiabetic, antioxidant, antibacterial, antimalarial, antifungal, and antiviral properties. The mechanism of action for the majority of the pharmacological actions reported, however, is unknown. In addition to this review, an in silico molecular docking study was performed against proteins with PDB IDs: 3AOX, 6OLX, 6OSP, and 6SDC to support the anticancer properties of Rubiadin. The toxicity profile, pharmacokinetics and possible structural modifications were also described. Rubiadin was also proven to have the highest binding affinity to the targeted proteins in an in silico study; thus, we believe it may be a potential anticancer molecule. In order to present Rubiadin as a novel candidate for future therapeutic development, advanced studies on preclinical, clinical trials, bioavailability, permeability and administration of safe doses are necessary.
    Matched MeSH terms: Anthraquinones/pharmacology*
  9. Haris K, Ismail S, Idris Z, Abdullah JM, Yusoff AA
    Asian Pac J Cancer Prev, 2014;15(11):4499-505.
    PMID: 24969876
    Glioblastoma, the most aggressive and malignant form of glioma, appears to be resistant to various chemotherapeutic agents. Hence, approaches have been intensively investigated to targeti specific molecular pathways involved in glioblastoma development and progression. Aloe emodin is believed to modulate the expression of several genes in cancer cells. We aimed to understand the molecular mechanisms underlying the therapeutic effect of Aloe emodin on gene expression profiles in the human U87 glioblastoma cell line utilizing microarray technology. The gene expression analysis revealed that a total of 8,226 gene alterations out of 28,869 genes were detected after treatment with 58.6 μg/ml for 24 hours. Out of this total, 34 genes demonstrated statistically significant change (p<0.05) ranging from 1.07 to 1.87 fold. The results revealed that 22 genes were up-regulated and 12 genes were down-regulated in response to Aloe emodin treatment. These genes were then grouped into several clusters based on their biological functions, revealing induction of expression of genes involved in apoptosis (programmed cell death) and tissue remodelling in U87 cells (p<0.01). Several genes with significant changes of the expression level e.g. SHARPIN, BCAP31, FIS1, RAC1 and TGM2 from the apoptotic cluster were confirmed by quantitative real-time PCR (qRT-PCR). These results could serve as guidance for further studies in order to discover molecular targets for the cancer therapy based on Aloe emodin treatment.
    Matched MeSH terms: Anthraquinones/pharmacology*
  10. Ismail S, Haris K, Abdul Ghani AR, Abdullah JM, Johan MF, Mohamed Yusoff AA
    J Asian Nat Prod Res, 2013 Sep;15(9):1003-12.
    PMID: 23869465 DOI: 10.1080/10286020.2013.818982
    Aloe emodin, one of the active compounds found in Aloe vera leaves, plays an important role in the regulation of cell growth and death. It has been reported to promote the anti-cancer effects in various cancer cells by inducing apoptosis. However, the mechanism of inducing apoptosis by this agent is poorly understood in glioma cells. This research is to investigate the apoptosis and cell cycle arrest inducing by aloe emodin on U87 human malignant glioma cells. Aloe emodin showed a time- and dose-dependent inhibition of U87 cells proliferation and decreased the percentage of viable U87 cells via the induction of apoptosis. Characteristic morphological changes, such as the formation of apoptotic bodies, were observed with confocal microscope by Annexin V-FITC/PI staining, supporting our viability study and flow cytometry analysis results. Our data also demonstrated that aloe emodin arrested the cell cycle in the S phase and promoted the loss of mitochondrial membrane potential in U87 cells that indicated the early event of the mitochondria-induced apoptotic pathway.
    Matched MeSH terms: Anthraquinones/pharmacology*
  11. Tan BH, Ahemad N, Pan Y, Palanisamy UD, Othman I, Yiap BC, et al.
    Biopharm Drug Dispos, 2018 Apr;39(4):205-217.
    PMID: 29488228 DOI: 10.1002/bdd.2127
    Many dietary supplements are promoted to patients with osteoarthritis (OA) including the three naturally derived compounds, glucosamine, chondroitin and diacerein. Despite their wide spread use, research on interaction of these antiarthritic compounds with human hepatic cytochrome P450 (CYP) enzymes is limited. This study aimed to examine the modulatory effects of these compounds on CYP2C9, a major CYP isoform, using in vitro biochemical assay and in silico models. Utilizing valsartan hydroxylase assay as probe, all forms of glucosamine and chondroitin exhibited IC50 values beyond 1000 μM, indicating very weak potential in inhibiting CYP2C9. In silico docking postulated no interaction with CYP2C9 for chondroitin and weak bonding for glucosamine. On the other hand, diacerein exhibited mixed-type inhibition with IC50 value of 32.23 μM and Ki value of 30.80 μM, indicating moderately weak inhibition. Diacerein's main metabolite, rhein, demonstrated the same mode of inhibition as diacerein but stronger potency, with IC50 of 6.08 μM and Ki of 1.16 μM. The docking of both compounds acquired lower CDOCKER interaction energy values, with interactions dominated by hydrogen and hydrophobic bondings. The ranking with respect to inhibition potency for the investigated compounds was generally the same in both in vitro enzyme assay and in silico modeling with order of potency being diacerein/rhein > various glucosamine/chondroitin forms. In vitro-in vivo extrapolation of inhibition kinetics (using 1 + [I]/Ki ratio) demonstrated negligible potential of diacerein to cause interaction in vivo, whereas rhein was predicted to cause in vivo interaction, suggesting potential interaction risk with the CYP2C9 drug substrates.
    Matched MeSH terms: Anthraquinones/pharmacology
  12. Shaghayegh G, Alabsi AM, Ali-Saeed R, Ali AM, Vincent-Chong VK, Ismail NH, et al.
    Asian Pac J Cancer Prev, 2017 Dec 29;18(12):3333-3341.
    PMID: 29286228
    Cancer is one of the most common causes of death in the developed world, with one-third of people diagnosed with
    cancer during their lifetime. Oral cancer commonly occurs involving the buccal mucosa (cheeks), tongue, floor of the
    mouth and lip. It is one of the most devastating and disfiguring of malignancies. Morinda citrifolia L., commonly known
    as ‘noni’, belongs to the Rubiaceae family. It is native to the Pacific islands, Hawaii, Caribbean, Asia and Australia.
    The plant displays broad curative effects in pharmacological studies. Damnacanthal (DAM) and Nordamnacanthal
    (NDAM), anthraquinone compounds isolated from the roots of Morinda citrifolia L., has been used for the treatment
    of several chronic diseases including cancer. The objectives of this study were to evaluate cytotoxicity, morphological
    changes, cell death mode (apoptosis/necrosis), and cell migration induced by DAM and NDAM on the most common
    type of oral cancer, oral squamous cell carcinoma (OSCC)cells. Anti-proliferative effects of these compounds against
    OSCC cell lines were determined by MTT assay. The mode of cell death was analysed by phase contrast and fluorescent
    microscopy as well as flow cytometry. In addition, cell migration was assessed. The results showed that DAM and
    NDAM exerted cytotoxicity against OSCC cells with IC50 values of 1.9 to >30 μg/ml after 72 h treatment. Maximum
    growth inhibition among the tested cell lines for both compounds was observed in H400 cells, and thus it was selected
    for further study. The study demonstrated inhibition of H400 OSCC cell proliferation, marked apoptotic morphological
    changes, induction of early apoptosis, and inhibition of cell migration by DAM and NDAM. Therefore, this information
    suggests that these compounds from noni have potential for used as anti tumor agents for oral cancer therapy.
    Matched MeSH terms: Anthraquinones/pharmacology*
  13. Lim SH, Nowak-Sliwinska P, Kamarulzaman FA, van den Bergh H, Wagnières G, Lee HB
    Photochem Photobiol, 2010 Mar-Apr;86(2):397-402.
    PMID: 20074086 DOI: 10.1111/j.1751-1097.2009.00684.x
    In this study, the photodynamic therapy (PDT) induced efficacy of a semi-synthesized analogue 15(1)-hydroxypurpurin-7-lactone dimethyl ester or G2, in terms of chick chorioallantoic membrane blood vessel occlusion was evaluated in reference to verteporfin. Early formulation studies showed that G2 prepared in a system of cremophor EL 2.5% and ethanol 2.5% in saline was biocompatible up to 20 microL volume of injection. Following injection, G2 accumulation peaked within the first minute and its extravasation from intra- to extra-vascular occurred somewhat slower as compared with verteporfin. In the PDT study, closure of capillaries and small neovessels was observed with 4 microg per embryo of G2 and a light dose of 20 J cm(-2) at a fluence rate of 40 mW cm(-2) filtered at 400-440 nm-a result that may be considered optimum for the treatment of age-related macular degeneration (AMD). Also, partial occlusion of the large vessels was observed using the same dose of G2 and light-an effect which is desirable for cancer treatment. From this study, we conclude that G2 has the potential to be developed as a therapeutic agent for photodynamic treatment for AMD and cancer.
    Matched MeSH terms: Anthraquinones/pharmacology*
  14. Abu N, Akhtar MN, Ho WY, Yeap SK, Alitheen NB
    Molecules, 2013 Aug 27;18(9):10367-77.
    PMID: 23985955 DOI: 10.3390/molecules180910367
    Breast cancer is becoming more prominent in women today. As of now, there are no effective treatments in treating metastatic breast cancer. We have tested the cytotoxic and anti-migration effects of BHAQ, a synthesized anthraquinone, on two breast cancer cell lines, MCF-7 and MDA-MB231. Anthraquinones are an interesting class of molecules that display a wide spectrum of biological applications, including anticancer properties. Cellular inhibition was tested through a MTT assay, double acridine orange/propidium iodide staining and FACS cell cycle analysis. Inhibition of migration was tested by the wound healing method, and migration through a Boyden chamber. BHAQ was cytotoxic towards both cell lines in a dose dependent and possibly cell-dependent manner. Additionally, BHAQ also inhibited the migration of the highly metastatic MDA-MB231 cell line.
    Matched MeSH terms: Anthraquinones/pharmacology*
  15. Bharti R, Dey G, Ojha PK, Rajput S, Jaganathan SK, Sen R, et al.
    Oncogene, 2016 Jul 28;35(30):3965-75.
    PMID: 26616855 DOI: 10.1038/onc.2015.466
    Interleukin-6 (IL-6) signaling network has been implicated in oncogenic transformations making it attractive target for the discovery of novel cancer therapeutics. In this study, potent antiproliferative and apoptotic effect of diacerein were observed against breast cancer. In vitro apoptosis was induced by this drug in breast cancer cells as verified by increased sub-G1 population, LIVE/DEAD assay, cell cytotoxicity and presence of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, as well as downregulation of antiapoptotic proteins Bcl-2 and Bcl-xL and upregulation of apoptotic protein Bax. In addition, apoptosis induction was found to be caspase dependent. Further molecular investigations indicated that diacerein instigated apoptosis was associated with inhibition of IL-6/IL-6R autocrine signaling axis. Suppression of STAT3, MAPK and Akt pathways were also observed as a consequence of diacerein-mediated upstream inhibition of IL-6/IL-6R. Fluorescence study and western blot analysis revealed cytosolic accumulation of STAT3 in diacerein-treated cells. The docking study showed diacerein/IL-6R interaction that was further validated by competitive binding assay and isothermal titration calorimetry. Most interestingly, it was found that diacerein considerably suppressed tumor growth in MDA-MB-231 xenograft model. The in vivo antitumor effect was correlated with decreased proliferation (Ki-67), increased apoptosis (TUNEL) and inhibition of IL-6/IL-6R-mediated STAT3, MAPK and Akt pathway in tumor remnants. Taken together, diacerein offered a novel blueprint for cancer therapy by hampering IL-6/IL-6R/STAT3/MAPK/Akt network.
    Matched MeSH terms: Anthraquinones/pharmacology*
  16. Abu N, Ali NM, Ho WY, Yeap SK, Aziz MY, Alitheen NB
    Anticancer Agents Med Chem, 2014 Jun;14(5):750-5.
    PMID: 24164045
    The Noni fruit, or scientifically known as Morinda citrifolia can be found in various parts of the world, especially in the pacific region. It is a small evergreen bushy-like tree originated from the Rubiaceae family. The plant has been used by polynesians as a medicinal herb for more than 2000 years. A substantial amount of phytochemicals can be found in the roots of this plant. Among all, damnacanthal has been found to be the most interesting, versatile and potent compound. Damnacanthal or chemically known as,3- hydroxy-1-methoxyanthraquinone-2-caboxaldehyde (C16H10O5), appears as pale yellow crystals with a melting point of 210-211 °C. This compound is of particular interest due to its striking pharmacological properties. Damnacanthal was shown to inhibit the oncogene Ras, p56lck tyrosine kinase, NF-KB pathway and induce apoptosis in vitro. This review aims to discuss the biological properties of damnacanthal, specifically on its anti-cancer activity that has been reported.
    Matched MeSH terms: Anthraquinones/pharmacology
  17. Latifah SY, Gopalsamy B, Abdul Rahim R, Manaf Ali A, Haji Lajis N
    Molecules, 2021 Mar 12;26(6).
    PMID: 33808969 DOI: 10.3390/molecules26061554
    BACKGROUND: This study reports on the cytotoxic properties of nordamnacanthal and damnacanthal, isolated from roots of Morinda elliptica on T-lymphoblastic leukaemia (CEM-SS) cell lines.

    METHODS: MTT assay, DNA fragmentation, ELISA and cell cycle analysis were carried out.

    RESULTS: Nordamnacanthal and damnacanthal at IC50 values of 1.7 μg/mL and10 μg/mL, respectively. At the molecular level, these compounds caused internucleosomal DNA cleavage producing multiple 180-200 bp fragments that are visible as a "ladder" on the agarose gel. This was due to the activation of the Mg2+/Ca2+-dependent endonuclease. The induction of apoptosis by nordamnacanthal was different from the one induced by damnacanthal, in a way that it occurs independently of ongoing transcription process. Nevertheless, in both cases, the process of dephosphorylation of protein phosphates 1 and 2A, the ongoing protein synthesis and the elevations of the cytosolic Ca2+ concentration were not needed for apoptosis to take place. Nordamnacanthal was found to have a cytotoxic effect by inducing apoptosis, while damnacanthal caused arrest at the G0/G1 phase of the cell cycle.

    CONCLUSION: Damnacanthal and nordamnacanthal have anticancer properties, and could act as potential treatment for T-lymphoblastic leukemia.

    Matched MeSH terms: Anthraquinones/pharmacology*
  18. Abu N, Zamberi NR, Yeap SK, Nordin N, Mohamad NE, Romli MF, et al.
    BMC Complement Altern Med, 2018 Jan 27;18(1):31.
    PMID: 29374471 DOI: 10.1186/s12906-018-2102-3
    BACKGROUND: Morinda citrifolia L. that was reported with immunomodulating and cytotoxic effects has been traditionally used to treat multiple illnesses including cancer. An anthraquinone derived from fruits of Morinda citrifolia L., nordamnacanthal, is a promising agent possessing several in vitro biological activities. However, the in vivo anti-tumor effects and the safety profile of nordamnacanthal are yet to be evaluated.

    METHODS: In vitro cytotoxicity of nordamnacanthal was tested using MTT, cell cycle and Annexin V/PI assays on human MCF-7 and MDA-MB231 breast cancer cells. Mice were orally fed with nordamnacanthal daily for 28 days for oral subchronic toxicity study. Then, the in vivo anti-tumor effect was evaluated on 4T1 murine cancer cells-challenged mice. Changes of tumor size and immune parameters were evaluated on the untreated and nordamnacanthal treated mice.

    RESULTS: Nordamnacanthal was found to possess cytotoxic effects on MDA-MB231, MCF-7 and 4T1 cells in vitro. Moreover, based on the cell cycle and Annexin V results, nordamnacanthal managed to induce cell death in both MDA-MB231 and MCF-7 cells. Additionally, no mortality, signs of toxicity and changes of serum liver profile were observed in nordamnacanthal treated mice in the subchronic toxicity study. Furthermore, 50 mg/kg body weight of nordamncanthal successfully delayed the progression of 4T1 tumors in Balb/C mice after 28 days of treatment. Treatment with nordamnacanthal was also able to increase tumor immunity as evidenced by the immunophenotyping of the spleen and YAC-1 cytotoxicity assays.

    CONCLUSION: Nordamnacanthal managed to inhibit the growth and induce cell death in MDA-MB231 and MCF-7 cell lines in vitro and cease the tumor progression of 4T1 cells in vivo. Overall, nordamnacanthal holds interesting anti-cancer properties that can be further explored.

    Matched MeSH terms: Anthraquinones/pharmacology*
  19. Alitheen NB, Manaf AA, Yeap SK, Shuhaimi M, Nordin L, Mashitoh AR
    Pharm Biol, 2010 Apr;48(4):446-52.
    PMID: 20645725 DOI: 10.3109/13880200903168031
    Morinda elliptica Ridley (Rubiaceae) has been used traditionally as a medicine to treat various diseases in Malaysia and southeast Asia. In the present study we investigated the immunomodulatory effects of damnacanthal isolated from the roots of Morinda elliptica. The immunomodulatory effect of this compound was evaluated by using the lymphocyte proliferation assay with mouse thymocytes and human peripheral blood mononuclear cells (PBMC). In addition, the effect of the compound on PBMC cell cycle progression was studied by using flow cytometry. The production of human interleukin-2 and human inteleukin-12 cytokines was also assessed using the enzyme linked immunosorbent assay (ELISA) technique. The lymphocyte proliferation assay showed that damnacanthal was able to activate mouse thymocytes and PBMC at a low concentration (0.468 microg/mL). Moreover, the production of human interleukin-2 and human interleukin-12 cytokines in the culture supernatant from damnacanthal activated lymphocytes was markedly up-regulated at 24 h and sustained until 72 h with a slight decrease with time. A positive correlation was found between the level of these two cytokines and the MTT-based proliferation assay. Based on the above results, damnacanthal can act as an immunomodulatory agent which may be very useful for maintaining a healthy immune system.
    Matched MeSH terms: Anthraquinones/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links