Displaying all 11 publications

Abstract:
Sort:
  1. Lim Kim Choo LN, Ahmed OH
    ScientificWorldJournal, 2014;2014:906021.
    PMID: 25215335 DOI: 10.1155/2014/906021
    Pineapples (Ananas comosus (L.) Merr.) cultivation on drained peats could affect the release of carbon dioxide (CO2) into the atmosphere and also the leaching of dissolved organic carbon (DOC). Carbon dioxide emission needs to be partitioned before deciding on whether cultivated peat is net sink or net source of carbon. Partitioning of CO2 emission into root respiration, microbial respiration, and oxidative peat decomposition was achieved using a lysimeter experiment with three treatments: peat soil cultivated with pineapple, bare peat soil, and bare peat soil fumigated with chloroform. Drainage water leached from cultivated peat and bare peat soil was also analyzed for DOC. On a yearly basis, CO2 emissions were higher under bare peat (218.8 t CO2 ha/yr) than under bare peat treated with chloroform (205 t CO2 ha/yr), and they were the lowest (179.6 t CO2 ha/yr) under cultivated peat. Decreasing CO2 emissions under pineapple were attributed to the positive effects of photosynthesis and soil autotrophic activities. An average 235.7 mg/L loss of DOC under bare peat suggests rapid decline of peat organic carbon through heterotrophic respiration and peat decomposition. Soil CO2 emission depended on moderate temperature fluctuations, but it was not affected by soil moisture.
    Matched MeSH terms: Ananas/chemistry*
  2. Ramli AN, Aznan TN, Illias RM
    J Sci Food Agric, 2017 Mar;97(5):1386-1395.
    PMID: 27790704 DOI: 10.1002/jsfa.8122
    Bromelain is a mixture of proteolytic enzymes found in pineapple (Ananas comosus) plants. It can be found in several parts of the pineapple plant, including the stem, fruit, leaves and peel. High demand for bromelain has resulted in gradual increases in bromelain production. These increases have led to the need for a bromelain production strategy that yields more purified bromelain at a lower cost and with fewer production steps. Previously, bromelain was purified by conventional centrifugation, ultrafiltration and lyophilisation. Recently, the development of more modern purification techniques such as gel filtration, ion exchange chromatography, affinity chromatography, aqueous two-phase extraction and reverse micelle chromatography has resulted in increased industrial bromelain production worldwide. In addition, recombinant DNA technology has emerged as an alternative strategy for producing large amounts of ultrapure bromelain. An up-to-date compilation of data regarding the commercialisation of bromelain in the clinical, pharmaceutical and industrial fields is provided in this review. © 2016 Society of Chemical Industry.
    Matched MeSH terms: Ananas/chemistry
  3. Jamal P, Alam MZ, Suhani F
    Med J Malaysia, 2008 Jul;63 Suppl A:107-8.
    PMID: 19025008
    Large quantities of agro-based liquid wastes are produced every year and their disposal is often a problem for industries. In light of that, in this study prudent effort was done to screen the agro-industrial wastes - pineapple waste (PAW) and palm oil mill effluent (POME) for valuable biophenols product. Three different solvents; ethanol, acetone and distilled water were screened in order to enhance the process. All experiments were performed using fixed process conditions of solid to solvent ratio, temperatures, time and agitation speed. Effectiveness of extraction process to produce biophenol was based on high amount with more activity. POME was selected as potential source with biophenol content of 125.42 mg/L GAE.
    Matched MeSH terms: Ananas/chemistry*
  4. Hameed BH, Krishni RR, Sata SA
    J Hazard Mater, 2009 Feb 15;162(1):305-11.
    PMID: 18573607 DOI: 10.1016/j.jhazmat.2008.05.036
    In this paper, pineapple stem (PS) waste, an agricultural waste available in large quantity in Malaysia, was utilized as low-cost adsorbent to remove basic dye (methylene blue, MB) from aqueous solution by adsorption. Batch mode experiments were conducted at 30 degrees C to study the effects of initial concentration of methylene blue, contact time and pH on dye adsorption. Equilibrium adsorption isotherms and kinetic were investigated. The experimental data were analyzed by the Langmuir and Freundlich models and the isotherm data fitted well to the Langmuir isotherm with monolayer adsorption capacity of 119.05mg/g. The kinetic data obtained at different concentrations were analyzed using a pseudo-first-order and pseudo-second-order equation and intraparticle diffusion equation. The experimental data fitted very well the pseudo-second-order kinetic model. The PS was found to be very effective adsorbent for MB adsorption.
    Matched MeSH terms: Ananas/chemistry*
  5. Ying S, Lasekan O, Naidu KR, Lasekan S
    Molecules, 2012 Nov 22;17(12):13795-812.
    PMID: 23174897 DOI: 10.3390/molecules171213795
    Sensorial analysis of pineapple breads (conventionally baked, Cpb; fully baked frozen, Fpb and partially baked, Ppb) showed no significant differences in terms of aroma and taste. On the contrary, the scores for the overall quality between the partially baked and conventionally baked breads showed significant (p < 0.05) differences. At the same time, headspace analysis using a solid-phase microextraction (SPME) method identified 59 volatile compounds. The results of the aroma extracts dilution analysis (AEDA) revealed 19 most odour-active compounds with FD factors in the range of 32-128 as the key odourants of the pineapple breads. Further analysis of the similarities and differences between the pineapple breads in terms of the key odourants were carried out by the application of PLS-DA and PLS-regression coefficients. Results showed that Ppb exhibited strong positive correlations with most of the volatile- and non-volatile compounds, while the Cpb showed significant positive correlations with hexanal and 4-hydroxy-2,5-dimethyl-3(2H)-furanone, and the Fpb had strong positive correlations with lactic acid, benzoic acid, benzaldehyde and ethyl propanoate.
    Matched MeSH terms: Ananas/chemistry*
  6. Ahmed OH, Ahmad HM, Musa HM, Rahim AA, Rastan SO
    ScientificWorldJournal, 2005 Jan 21;5:42-9.
    PMID: 15674449
    In Malaysia, pineapples are grown on peat soils, but most K fertilizer recommendations do not take into account K loss through leaching. The objective of this study was to determine applied K use efficiency under a conventionally recommended fertilization regime in pineapple cultivation with residues removal. Results showed that K recovery from applied K fertilizer in pineapple cultivation on tropical peat soil was low, estimated at 28%. At a depth of 0-10 cm, there was a sharp decrease of soil total K, exchangeable K, and soil solution K days after planting (DAP) for plots with K fertilizer. This decline continued until the end of the study. Soil total, exchangeable, and solution K at the end of the study were generally lower than prior values before the study. There was no significant accumulation of K at depths of 10-25 and 25-45 cm. However, K concentrations throughout the study period were generally lower or equal to their initial status in the soil indicating leaching of the applied K and partly explained the low K recovery. Potassium losses through leaching in pineapple cultivation on tropical peat soils need to be considered in fertilizer recommendations for efficient recovery of applied K.
    Matched MeSH terms: Ananas/chemistry
  7. Ahmed OH, Husni MH, Anuar AR, Hanafi MM
    ScientificWorldJournal, 2004 Nov 20;4:1007-13.
    PMID: 15578124
    Due to the 1997/98 haze problem in South-East Asia and the increasing need for sustainable food production and development, the usual management of crop residues (including pineapple wastes) through burning is prohibited. As a result, the need for alternative uses of pineapple wastes in pineapple production has been emphasized. This study investigated an environmentally friendly means of recycling pineapple leaves for agricultural use. Pineapple leaves were shredded and composted in a composting drum for 30 days. Part of the shredded leaves was ashed in a muffle furnace for 4 h. Humic acid (HA), K-fulvate, and K in HA and compost were analyzed using standard procedures. An ash to water ratio of 1:7 was used to extract 0.1 molar (M) KOH from the shredded leaves. The 0.1 M KOH contained 50% K and was able to extract 20% HA from the composted pineapple leaves. Percent K in the fulvate using 0.1 M KOH was 43. Besides serving as a foliar spray (supplement soil application K fertilizers), source of K for freshwater fish (e.g., tilapia), the HA produced can be used as a soil conditioner. Studies show that between 0.05-0.01 g of HA per kg soil retards runoff by 36% in sandy and sandy loam soils. The K-fulvate can be used as a fluid fertilizer. In addition, the pH of 2 of the K-fulvate suggests it could be used to dissolve phosphate rocks, particularly those in the arid regions where high soil pH does not facilitate the dissolution of these important rocks that serve as one of the sources of phosphorus fertilizer in agriculture.
    Matched MeSH terms: Ananas/chemistry*
  8. George DS, Razali Z, Santhirasegaram V, Somasundram C
    J Food Sci, 2015 Feb;80(2):S426-34.
    PMID: 25586772 DOI: 10.1111/1750-3841.12762
    The effects of ultraviolet (UV-C) and medium heat (70 °C) treatments on the quality of fresh-cut Chokanan mango and Josephine pineapple were investigated. Quality attributes included physicochemical properties (pH, titratable acidity, and total soluble solids), ascorbic acid content (vitamin C), antioxidant activity, as well as microbial inactivation. Consumers' acceptance was also investigated through sensory evaluation of the attributes (appearance, texture, aroma and taste). Furthermore, shelf-life study of samples stored at 4 ± 1 °C was conducted for 15 d. The fresh-cut fruits were exposed to UV-C for 0, 15, 30, and 60 min while heat treatments were carried out at 70 °C for 0, 5, 10 and 20 min. Both UV-C and medium heat treatments resulted in no significant changes to the physicochemical attributes of both fruits. The ascorbic acid content of UV-C treated fruits was unaffected; however, medium heat treatment resulted in deterioration of ascorbic acids in both fruits. The antioxidants were enhanced with UV-C treatment which could prove invaluable to consumers. Heat treatments on the other hand resulted in decreased antioxidant activities. Microbial count in both fruits was significantly reduced by both treatments. The shelf life of the fresh-cut fruits were also successfully extended to a maximum of 15 d following treatments. As for consumers' acceptance, UV-C treated fruits were the most accepted as compared to their heat-treated counterparts. The results obtained through this study support the use of UV-C treatment for better retention of quality, effective microbial inactivation and enhancement of health promoting compounds for the benefit of consumers.
    Matched MeSH terms: Ananas/chemistry
  9. Leng LY, Husni MH, Samsuri AW
    Bioresour Technol, 2011 Nov;102(22):10759-62.
    PMID: 21958525 DOI: 10.1016/j.biortech.2011.08.131
    This study was undertaken to compare the chemical properties and yields of pineapple leaf residue (PLR) char produced by field burning (CF) with that produced by a partial combustion of air-dried PLR at 340 °C for 3 h in a furnace (CL). Higher total C, lignin content, and yield from CL as well as the presence of aromatic compounds in the Fourier Transform Infrared spectra of the char produced from CL suggest that the CL process was better in sequestering C than was the CF process. Although the C/N ratio of char produced from CL was low indicating a high N content of the char, the C in the char produced from CL was dominated by lignin suggesting that the decomposition of char produced from CL would be slow. To sequester C by char application, the PLR should be combusted in a controlled process rather than by burning in the field.
    Matched MeSH terms: Ananas/chemistry*
  10. Robert SD, Ismail AA, Winn T, Wolever TM
    Asia Pac J Clin Nutr, 2008;17(1):35-9.
    PMID: 18364324
    The objective of the present study was to measure the glycemic index of durian, papaya, pineapple and water-melon grown in Malaysia. Ten (10) healthy volunteers (5 females, 5 males; body mass index 21.18+/-1.7 kg/m2) consumed 50 g of available carbohydrate portions of glucose (reference food) and four test foods (durian, papaya, pineapple and watermelon) in random order after an overnight fast. Glucose was tested on three separate occasions, and the test foods were each tested once. Postprandial plasma glucose was measured at intervals for two hours after intake of the test foods. Incremental areas under the curve were calculated, and the glycemic index was determined by expressing the area under the curve after the test foods as a percentage of the mean area under the curve after glucose. The results showed that the area under the curve after pineapple, 232+/-24 mmolxmin/L, was significantly greater than those after papaya, 147+/-14, watermelon, 139+/-8, and durian, 124+/-13 mmolxmin/L (p<0.05). Similarly, the glycemic index of pineapple, 82+/-4, was significantly greater than those of papaya, 58+/-6, watermelon, 55+/-3, and durian, 49+/-5 (p<0.05). The differences in area under the curve and glycemic index among papaya, watermelon and durian were not statistically significant. We conclude that pineapple has a high glycemic index, whereas papaya is intermediate and watermelon and durian are low glycemic index foods. The validity of these results depends on the accuracy of the data in the food tables upon which the portion sizes tested were based.
    Matched MeSH terms: Ananas/chemistry
  11. Mohamad NE, Keong Yeap S, Beh BK, Romli MF, Yusof HM, Kristeen-Teo YW, et al.
    J Sci Food Agric, 2018 Jan;98(2):534-540.
    PMID: 28631270 DOI: 10.1002/jsfa.8491
    BACKGROUND: Vinegar is widely used as a food additive, in food preparation and as a food supplement. This study compared the phenolic acid profiles and in vivo toxicities, and antioxidant and immunomodulatory effects of coconut, nipah and pineapple juice vinegars, which were respectively prepared via a two-step fermentation using Saccharomyces cerevisiae 7013 INRA and Acetobacter aceti vat Europeans.

    RESULTS: Pineapple juice vinegar, which had the highest total phenolic acid content, also exhibited the greatest in vitro antioxidant capacity compared to coconut juice and nipah juice vinegars. Following acute and sub-chronic in vivo toxicity evaluation, no toxicity and mortality were evident and there were no significant differences in the serum biochemical profiles between mice administered the vinegars versus the control group. In the sub-chronic toxicity evaluation, the highest liver antioxidant levels were found in mice fed with pineapple juice vinegar, followed by coconut juice and nipah juice vinegars. However, compared to the pineapple juice and nipah juice vinegars, the mice fed with coconut juice vinegar, exhibited a higher population of CD4+ and CD8+ T-lymphocytes in the spleen, which was associated with greater levels of serum interleukin-2 and interferon-γ cytokines.

    CONCLUSIONS: Overall, the data suggested that not all vinegar samples cause acute and sub-chronic toxicity in vivo. Moreover, the in vivo immunity and organ antioxidant levels were enhanced, to varying extents, by the phenolic acids present in the vinegars. The results obtained in this study provide appropriate guidelines for further in vivo bioactivity studies and pre-clinical assessments of vinegar consumption. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Ananas/chemistry*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links