The demand for astaxanthin has been increasing for many health applications ranging from pharmaceuticals, food, cosmetics, and aquaculture due to its bioactive properties. Haematococcus pluvialis is widely recognized as the microalgae species with the highest natural accumulation of astaxanthin, which has made it a valuable source for industrial production. Astaxanthin produced by other sources such as chemical synthesis or fermentation are often produced in the cis configuration, which has been shown to have lower bioactivity. Additionally, some sources of astaxanthin, such as shrimp, may denature or degrade when exposed to high temperatures, which can result in a loss of bioactivity. Producing natural astaxanthin through the cultivation of H. pluvialis is presently a demanding and time-consuming task, which incurs high expenses and restricts the cost-effective industrial production of this valuable substance. The production of astaxanthin occurs through two distinct pathways, namely the cytosolic mevalonate pathway and the chloroplast methylerythritol phosphate (MEP) pathway. The latest advancements in enhancing product quality and extracting techniques at a reasonable cost are emphasized in this review. The comparative of specific extraction processes of H. pluvialis biological astaxanthin production that may be applied to large-scale industries were assessed. The article covers a contemporary approach to optimizing microalgae culture for increased astaxanthin content, as well as obtaining preliminary data on the sustainability of astaxanthin production and astaxanthin marketing information.
Microalgae are important microorganisms which produce potentially valuable compounds. Astaxanthin, a group of xanthophyll carotenoids, is one of the most powerful antioxidants mainly found in microalgae, yeasts, and crustaceans. Environmental stresses such as intense light, drought, high salinity, nutrient depletion, and high temperature can induce the accumulation of astaxanthin. Thus, this research aims to investigate the effect of black light, also known as long-wave ultraviolet radiation or UV-A, as a stressor on the accumulation of astaxanthin as well as to screen the antioxidant property in two tropical green algal strains isolated from Malaysia, Coelastrum sp. and Monoraphidium sp. SP03. Monoraphidium sp. SP03 showed a higher growth rate (0.66 day-1) compared to that of Coelastrum sp. (0.22 day-1). Coelastrum sp. showed significantly higher accumulation of astaxanthin in black light (0.999 g mL culture-1) compared to that in control condition (0.185 g mL-1). Similarly, Monoraphidium sp. SP03 showed higher astaxanthin content in black light (0.476 g mL culture-1) compared to that in control condition (0.363 g mL culture-1). Coelastrum sp. showed higher scavenging activity (30.19%) when cultured in black light condition, indicating a correlation between the antioxidant activity and accumulation of astaxanthin. In this study, black light was shown to possess great potential to enhance the production of astaxanthin in microalgae.
Astaxanthin, a carotenoid pigment found in several aquatic organisms, is responsible for the red colour of salmon, trout and crustaceans. In this study, astaxanthin production from freshwater microalga Chlorella sorokiniana and marine microalga Tetraselmis sp. was investigated. Cell growth and astaxanthin production were determined spectrophotometrically at 620 and 480 nm, respectively. Astaxanthin was extracted using acetone and measured subsequent to biomass removal. Aerated conditions favoured astaxanthin production in C. sorokiniana, whereas Tetraselmis sp. was best cultured under unaerated conditions. C. sorokiniana produced more astaxanthin with the highest yield reached at 7.83 mg/l in 6.0 mM in nitrate containing medium compared to Tetraselmis sp. which recorded the highest yield of only 1.96 mg/l in 1.5 mM nitrate containing medium. Production in C. sorokiniana started at the early exponential phase, indicating that astaxanthin may be a growth-associated product in this microalga. Further optimization of astaxanthin production was performed using C. sorokiniana through a 2(3) full factorial experimental design, and a yield of 8.39 mg/l was achieved. Overall, the study has shown that both microalgae are capable of producing astaxanthin. Additionally, this research has highlighted C. sorokiniana as a potential astaxanthin producer that could serve as a natural astaxanthin source in the current market.
Astaxanthin colloidal particles were produced using solvent-diffusion technique in the presence of different food grade surface active compounds, namely, Polysorbate 20 (PS20), sodium caseinate (SC), gum Arabic (GA) and the optimum combination of them (OPT). Particle size and surface charge characteristics, rheological behaviour, chemical stability, colour, in vitro cellular uptake, in vitro antioxidant activity and residual solvent concentration of prepared colloidal particles were evaluated. The results indicated that in most cases the mixture of surface active compounds lead to production of colloidal particles with more desirable physicochemical and biological properties, as compared to using them individually. The optimum combination of PS20, SC and GA could produce the astaxanthin colloidal particles with small particle size, polydispersity index (PDI), conductivity and higher zeta potential, mobility, cellular uptake, colour intensity and in vitro antioxidant activity. In addition, all prepared astaxanthin colloidal particles had significantly (p<0.05) higher cellular uptake than pure astaxanthin powder.
A simplex centroid mixture design was used to study the interactions between two chosen solvents, dichloromethane (DCM) and acetone (ACT), as organic-phase components in the formation and physicochemical characterization and cellular uptake of astaxanthin nanodispersions produced using precipitation and condensation processes. Full cubic or quadratic regression models with acceptable determination coefficients were obtained for all of the studied responses. Multiple-response optimization predicted that the organic phase with 38% (w/w) DCM and 62% (w/w) ACT yielded astaxanthin nanodispersions with the minimum particle size (106 nm), polydispersity index (0.191), and total astaxanthin loss (12.7%, w/w) and the maximum cellular uptake (2981 fmol/cell). Astaxanthin cellular uptake from the produced nanodispersions also showed a good correlation with their particle size distributions and astaxanthin trans/cis isomerization ratios. The absence of significant (p > 0.05) differences between the experimental and predicted values of the response variables confirmed the adequacy of the fitted models.
Natural antioxidants from sustainable sources are favoured to accommodate worldwide antioxidant demand. In addition to bioprospecting for natural and sustainable antioxidant sources, this study aimed to investigate the relationship between the bioactives (i.e. carotenoid and phenolic acids) and the antioxidant capacities in fucoxanthin-producing algae. Total carotenoid, phenolic acid, fucoxanthin contents and fatty acid profile of six species of algae (five microalgae and one macroalga) were quantified followed by bioactivity evaluation using four antioxidant assays. Chaetoceros calcitrans and Isochrysis galbana displayed the highest antioxidant activity, followed by Odontella sinensis and Skeletonema costatum which showed moderate bioactivities. Phaeodactylum tricornutum and Saccharina japonica exhibited the least antioxidant activities amongst the algae species examined. Pearson correlation and multiple linear regression showed that both carotenoids and phenolic acids were significantly correlated (p<0.05) with the antioxidant activities, indicating the influence of these bioactives on the algal antioxidant capacities.
Haematococcus pluvialis, a green microalga, appears to be a rich source of valuable bioactive compounds, such as astaxanthin, carotenoids, proteins, lutein, and fatty acids (FAs). Astaxanthin has a variety of health benefits and is used in the nutraceutical and pharmaceutical industries. Astaxanthin, for example, preserves the redox state and functional integrity of mitochondria and shows advantages despite a low dietary intake. Because of its antioxidant capacity, astaxanthin has recently piqued the interest of researchers due to its potential pharmacological effects, which include anti-diabetic, anti-inflammatory, and antioxidant activities, as well as neuro-, cardiovascular-, ocular, and skin-protective properties. Astaxanthin is a popular nutritional ingredient and a significant component in animal and aquaculture feed. Extensive studies over the last two decades have established the mechanism by which persistent oxidative stress leads to chronic inflammation, which then mediates the majority of serious diseases. This mini-review provides an overview of contemporary research that makes use of the astaxanthin pigment. This mini-review provides insight into the potential of H. pluvialis as a potent antioxidant in the industry, as well as the broad range of applications for astaxanthin molecules as a potent antioxidant in the industrial sector.
Seaweed is one of the largest producers of biomass in marine environment and is a rich arsenal of active metabolites and functional ingredients with valuable beneficial health effects. Being a staple part of Asian cuisine, investigations on the crude extracts of Phaeophyceae or brown algae revealed marked antitumor activity, eliciting a variety of research to determine the active ingredients involved in this potential. The sulfated polysaccharide of fucoidan and carotenoid of fucoxanthin were found to be the most important active metabolites of brown algae as potential chemotherapeutic or chemopreventive agents. This review strives to provide detailed account of all current knowledge on the anticancer and antitumor activity of fucoidan and fucoxanthin as the two major metabolites isolated from brown algae.