Displaying all 4 publications

Abstract:
Sort:
  1. Vignesh R, Shankar EM
    EBioMedicine, 2017 Oct;24:20-21.
    PMID: 28865747 DOI: 10.1016/j.ebiom.2017.08.025
    Matched MeSH terms: Virus Latency/drug effects*; Virus Latency/immunology
  2. Yadav M, Nambiar S, Khoo SP, Yaacob HB
    Arch Oral Biol, 1997 Aug;42(8):559-67.
    PMID: 9347118
    The prevalence and cellular distribution of human herpesvirus 7 (HHV-7) in archival labial salivary glands was analysed for virus-specific DNA sequences by polymerase chain reaction (PCR) and in situ hybridization signals. In addition, the cellular expression of HHV-7-encoded protein was detected by immunohistochemical staining with a virus-specific monoclonal antibody. Eleven of 20 samples were positive for the HHV-7 DNA sequence by PCR. Eighteen of 20 tissues analysed by in situ hybridization showed signals in ductal, serous and mucous cells. Some nuclei of these cells and also the myoepithelial population were positive. In immunolocalization studies, all 20 salivary glands consistently showed HHV-7-expressed protein in the cytoplasm of ductal cuboidal and columnar cells. The protein was also found in the cytoplasm of mucous and serous acinar cells that were immunopositive for HHV-7. The observations are consistent with the suggestion that the labial salivary gland is a site for virus replication, potential persistence and a source of infective HHV-7 in saliva.
    Matched MeSH terms: Virus Latency
  3. Lung RW, Hau PM, Yu KH, Yip KY, Tong JH, Chak WP, et al.
    J Pathol, 2018 Apr;244(4):394-407.
    PMID: 29230817 DOI: 10.1002/path.5018
    Nasopharyngeal carcinoma (NPC) is a highly invasive epithelial malignancy that is prevalent in southern China and Southeast Asia. It is consistently associated with latent Epstein-Barr virus (EBV) infection. In NPC, miR-BARTs, the EBV-encoded miRNAs derived from BamH1-A rightward transcripts, are abundantly expressed and contribute to cancer development by targeting various cellular and viral genes. In this study, we establish a comprehensive transcriptional profile of EBV-encoded miRNAs in a panel of NPC patient-derived xenografts and an EBV-positive NPC cell line by small RNA sequencing. Among the 40 miR-BARTs, predominant expression of 22 miRNAs was consistently detected in these tumors. Among the abundantly expressed EBV-miRNAs, BART5-5p, BART7-3p, BART9-3p, and BART14-3p could negatively regulate the expression of a key DNA double-strand break (DSB) repair gene, ataxia telangiectasia mutated (ATM), by binding to multiple sites on its 3'-UTR. Notably, the expression of these four miR-BARTs represented more than 10% of all EBV-encoded miRNAs in tumor cells, while downregulation of ATM expression was commonly detected in all of our tested sequenced samples. In addition, downregulation of ATM was also observed in primary NPC tissues in both qRT-PCR (16 NP and 45 NPC cases) and immunohistochemical staining (35 NP and 46 NPC cases) analysis. Modulation of ATM expression by BART5-5p, BART7-3p, BART9-3p, and BART14-3p was demonstrated in the transient transfection assays. These findings suggest that EBV uses miRNA machinery as a key mechanism to control the ATM signaling pathway in NPC cells. By suppressing these endogenous miR-BARTs in EBV-positive NPC cells, we further demonstrated the novel function of miR-BARTs in inhibiting Zta-induced lytic reactivation. These findings imply that the four viral miRNAs work co-operatively to modulate ATM activity in response to DNA damage and to maintain viral latency, contributing to the tumorigenesis of NPC. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
    Matched MeSH terms: Virus Latency
  4. Gravitt PE
    J Clin Invest, 2011 Dec;121(12):4593-9.
    PMID: 22133884 DOI: 10.1172/JCI57149
    The discovery that certain high-risk strains of human papillomavirus (HR-HPV) cause nearly 100% of invasive cervical cancer has spurred a revolution in cervical cancer prevention by promoting the development of viral vaccines. Although the efficacy of these vaccines has already been demonstrated, a complete understanding of viral latency and natural immunity is lacking, and solving these mysteries could help guide policies of cervical cancer screening and vaccine use. Here, we examine the epidemiological and biological understanding of the natural history of HPV infection, with an eye toward using these studies to guide the implementation of cervical cancer prevention strategies.
    Matched MeSH terms: Virus Latency
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links