Displaying all 4 publications

Abstract:
Sort:
  1. Faradiani AR, Mayangsari Y, Sirinupong N, Saputra WD, Firdausyah PY
    Med J Malaysia, 2024 Aug;79(Suppl 4):44-50.
    PMID: 39215414
    INTRODUCTION: The number of inflammatory bowel diseases cases has increased throughout the years. Since, the current therapeutic methods have their adverse effects, this is leading to the development of alternative therapy derived from natural products.

    MATERIALS AND METHODS: In the present study, our objective was to explore the potential of Citrus aurantifolia peel extract (CAPE) on 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) induced colitis in mice. Twenty-eight male Balb/c mice were divided into four groups: (1) normal group, (2) TNBS group, (3) 125 mg/kg CAPE group and (4) 250 mg/kg CAPE group. Colitis was induced through rectal administration of TNBS. The anti-inflammatory effects of CAPE against colitis were assessed by body weight, DAI score, colonic length, weight-to-length ratio, haematology profile and histopathological examinations.

    RESULTS: Our results showed that CAPE maintained the body weight of mice, repressed the increase of DAI score, maintained mice colonic length and weight, improved blood profile and suppressed the excessive production of TNF-α, IL-6 and IL-1β. Furthermore, CAPE improved the histopathological score of colitis mice.

    CONCLUSION: All the findings of this study suggested that Citrus aurantifolia peel extract may be a potential natural agent for protecting mice against TNBS-induced colitis.

    Matched MeSH terms: Trinitrobenzenesulfonic Acid*
  2. Bhatia M, Landolfi C, Basta F, Bovi G, Ramnath RD, de Joannon AC, et al.
    Inflamm Res, 2008 Oct;57(10):464-71.
    PMID: 18827968 DOI: 10.1007/s00011-008-7210-y
    Chemokines play a fundamental role in trafficking and activation of leukocytes in colonic inflammation. We investigated the ability of bindarit, an inhibitor of monocyte chemoattractant protein-1 (MCP-1/CCL2) synthesis, to inhibit chemokine production by human intestinal epithelial cells (HT-29) and its effect in trinitro-benzene sulfonic acid (TNBS)-induced colitis in mice.
    Matched MeSH terms: Trinitrobenzenesulfonic Acid/pharmacology*
  3. Kuen CY, Fakurazi S, Othman SS, Masarudin MJ
    Nanomaterials (Basel), 2017 Nov 08;7(11).
    PMID: 29117121 DOI: 10.3390/nano7110379
    Conventional delivery of anticancer drugs is less effective due to pharmacological drawbacks such as lack of aqueous solubility and poor cellular accumulation. This study reports the increased drug loading, therapeutic delivery, and cellular accumulation of silibinin (SLB), a poorly water-soluble phenolic compound using a hydrophobically-modified chitosan nanoparticle (pCNP) system. In this study, chitosan nanoparticles were hydrophobically-modified to confer a palmitoyl group as confirmed by 2,4,6-Trinitrobenzenesulfonic acid (TNBS) assay. Physicochemical features of the nanoparticles were studied using the TNBS assay, and Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analyses. The FTIR profile and electron microscopy correlated the successful formation of pCNP and pCNP-SLB as nano-sized particles, while Dynamic Light Scattering (DLS) and Field Emission-Scanning Electron Microscopy (FESEM) results exhibited an expansion in size between pCNP and pCNP-SLB to accommodate the drug within its particle core. To evaluate the cytotoxicity of the nanoparticles, a Methylthiazolyldiphenyl-tetrazolium bromide (MTT) cytotoxicity assay was subsequently performed using the A549 lung cancer cell line. Cytotoxicity assays exhibited an enhanced efficacy of SLB when delivered by CNP and pCNP. Interestingly, controlled release delivery of SLB was achieved using the pCNP-SLB system, conferring higher cytotoxic effects and lower IC50 values in 72-h treatments compared to CNP-SLB, which was attributed to the hydrophobic modification of the CNP system.
    Matched MeSH terms: Trinitrobenzenesulfonic Acid
  4. Newton AMJ, Lakshmanan P
    PMID: 30657050 DOI: 10.2174/1871523018666190118112230
    OBJECTIVE: A number of natural polymer-based drug delivery systems targeting the colon are reported for different applications. Most of the research is based on the class of natural polymers such as polysaccharides. This study compares the anti-inflammatory effect of different polysaccharide based tablets on IBD when a drug carrier is targeted to the colon as matrix and coated systems.

    METHODS: The TNBS induced IBD Wistar rats were used as a model for the study. The microscopic and macroscopic parameters were studied in detail. Almost all the important IBD parameters were reported in this work.

    RESULTS: The results demonstrated that the polysaccharides are efficient in carrying the drugs to the colon. Reduction in the level of ulcer index (UI), Myeloperoxidase (MPO), and Malondialdehyde MDA, confirmed the inhibitory activity on the development of Reactive oxygen species (ROS). The increased level of Tumor necrosis factor (TNFα) an expression of colonic inducible nitric oxide synthase (iNOS) was lowered in treatments as compared to TNBS control.

    CONCLUSION: The different polymer-based mesalamine (DPBM) confirmed the efficient anti- inflammatory activity on IBD induced rats. The increased level of glutathione (GSH), and superoxide dismutase (SOD) also confirmed the effective anti-inflammatory effect. A significant decrease in the ulcer score and ulcer area was reported. The investigation revealed that chitosan is superior to pectin in IBD treatment likewise polysaccharide-based matrix systems are superior to the coated system.

    Matched MeSH terms: Trinitrobenzenesulfonic Acid
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links