Displaying all 4 publications

Abstract:
Sort:
  1. Ishak R, Hallett MB
    Biochem Biophys Res Commun, 2018 12 02;506(4):1065-1070.
    PMID: 30409431 DOI: 10.1016/j.bbrc.2018.10.174
    It has been proposed that Ca2+ activation of calpain-1 is an important trigger for rapid cell spreading by neutrophils. In this paper, we have investigated this by assessing the ex vivo functioning of neutrophils from calpain-1 null mice, Calpain-1 null neutrophils failed to migrate through TNF-activated endothelial monolayers. The failure to transmigrate through endothelial monolayers was therefore unlikely to be due to a failure of chemotaxis as chemotaxis by adherent calpain-1 null neutrophils towards fMLP was unpaired. In contrast, the capacity of calpian-1 neutrophils to spontaneously spread was limited to smaller diameters than for wild type cells. Photolytic uncaging of IP3 with Individual wild type neutrophils resulted in a large Ca2+ signal and rapid cell spreading. In contrast, calpain-1 neutrophils failed to spread in response to the IP3-induced Ca2+ signal. This work has therefore demonstrated that the presence of calpain-1 was required for effective rapid cell spreading by neutrophils.
    Matched MeSH terms: Transendothelial and Transepithelial Migration*
  2. Ab Mutalib NS, Othman SN, Mohamad Yusof A, Abdullah Suhaimi SN, Muhammad R, Jamal R
    PeerJ, 2016;4:e2119.
    PMID: 27350898 DOI: 10.7717/peerj.2119
    Background. Papillary thyroid carcinoma (PTC) is the commonest thyroid malignancy originating from the follicle cells in the thyroid. Despite a good overall prognosis, certain high-risk cases as in those with lymph node metastasis (LNM) have progressive disease and poorer prognosis. MicroRNAs are a class of non-protein-coding, 19-24 nucleotides single-stranded RNAs which regulate gene expression and these molecules have been shown to play a role in LNM. The integrated analysis of miRNAs and gene expression profiles together with transcription factors (TFs) has been shown to improve the identification of functional miRNA-target gene-TF relationships, providing a more complete view of molecular events underlying metastasis process. Objectives. We reanalyzed The Cancer Genome Atlas (TCGA) datasets on PTC to identify differentially expressed miRNAs/genes in PTC patients with LNM-positive (LNM-P) versus lymph node negative (LNN) PTC patients and to investigate the miRNA-gene-TF regulatory circuit that regulate LNM in PTC. Results. PTC patients with LNM (PTC LNM-P) have a significantly shorter disease-free survival rate compared to PTC patients without LNM (PTC LNN) (Log-rank Mantel Cox test, p = 0.0049). We identified 181 significantly differentially expressed miRNAs in PTC LNM-P versus PTC LNN; 110 were upregulated and 71 were downregulated. The five topmost deregulated miRNAs were hsa-miR-146b, hsa-miR-375, hsa-miR-31, hsa-miR-7-2 and hsa-miR-204. In addition, 395 miRNAs were differentially expressed between PTC LNM-P and normal thyroid while 400 miRNAs were differentially expressed between PTC LNN and normal thyroid. We found four significant enrichment pathways potentially involved in metastasis to the lymph nodes, namely oxidative phosphorylation (OxPhos), cell adhesion molecules (CAMs), leukocyte transendothelial migration and cytokine-cytokine receptor interaction. OxPhos was the most significantly perturbed pathway (p = 4.70E-06) involving downregulation of 90 OxPhos-related genes. Significant interaction of hsa-miR-301b with HLF, HIF and REL/NFkB transcription factors were identified exclusively in PTC LNM-P versus PTC LNN. Conclusion. We found evidence of five miRNAs differentially expressed in PTC LNM-P. Alteration in OxPhos pathway could be the central event in metastasis to the lymph node in PTC. We postulate that hsa-miR-301b might be involved in regulating LNM in PTC via interactions with HLF, HIF and REL/NFkB. To the best of our knowledge, the roles of these TFs have been studied in PTC but the precise role of this miRNA with these TFs in LNM in PTC has not been investigated.
    Matched MeSH terms: Transendothelial and Transepithelial Migration
  3. Tiong V, Shu MH, Wong WF, AbuBakar S, Chang LY
    Front Microbiol, 2018;9:2747.
    PMID: 30483242 DOI: 10.3389/fmicb.2018.02747
    Nipah virus (NiV) can infect multiple organs in humans with the central nervous system (CNS) being the most severely affected. Currently, it is not fully understood how NiV spreads throughout the body. NiV has been shown to infect certain leukocyte populations and we hypothesized that these infected cells could cross the blood-brain barrier (BBB), facilitating NiV entry into the CNS. Here, three leukocyte types, primary immature dendritic cells (iDC), primary monocytes (pMO), and monocytic cell line (THP-1), were evaluated for permissiveness to NiV. We found only iDC and THP-1 were permissive to NiV. Transendothelial migration of mock-infected and NiV-infected leukocytes was then evaluated using an in vitro BBB model established with human brain microvascular endothelial cells (HBMEC). There was approximately a threefold increase in migration of NiV-infected iDC across endothelial monolayer when compared to mock-infected iDC. In contrast, migration rates for pMO and THP-1 did not change upon NiV infection. Across TNF-α-treated endothelial monolayer, there was significant increase of almost twofold in migration of NiV-infected iDC and THP-1 over mock-infected cells. Immunofluorescence analysis showed the migrated NiV-infected leukocytes retained their ability to infect other cells. This study demonstrates for the first time that active NiV infection of iDC and THP-1 increased their transendothelial migration activity across HBMEC and activation of HBMEC by TNF-α further promoted migration. The findings suggest that NiV infection of leukocytes to disseminate the virus via the "Trojan horse" mechanism is a viable route of entry into the CNS.
    Matched MeSH terms: Transendothelial and Transepithelial Migration
  4. Chong YJ, Musa NF, Ng CH, Shaari K, Israf DA, Tham CL
    J Ethnopharmacol, 2016 Nov 04;192:248-255.
    PMID: 27404229 DOI: 10.1016/j.jep.2016.07.032
    PHARMOCOLOGICAL RELEVANCE: 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA), is a phloroglucinol compound found naturally in Melicope ptelefolia. Melicope ptelefolia has been used traditionally for centuries as natural remedy for wound infections and inflammatory diseases.

    AIM OF THE STUDY: Endothelial barrier dysfunction is a pathological hallmark of many diseases and can be caused by lipopolysaccharides (LPS) stimulation. Therefore, this study aims to investigate the possible barrier protective effects of tHGA upon LPS-stimulated inflammatory responses in human umbilical vein endothelial cells (HUVECs).

    MATERIALS AND METHODS: HUVECs were pretreated with tHGA prior to LPS stimulation, where inflammatory parameters including permeability, monocyte adhesion and migration, and release of pro-inflammatory mediators were examined. Additionally, the effect of tHGA on F-actin rearrangement and adhesion protein expression of LPS-stimulated HUVECs was evaluated.

    RESULTS: It was found that pretreatment with tHGA inhibited monocyte adhesion and transendothelial migration, reduced endothelial hyperpermeability and secretion of prostaglandin E2 (PGE2). Additionally, tHGA inhibited cytoskeletal rearrangement and adhesion protein expression on LPS-stimulated HUVECs.

    CONCLUSION: As the regulation of endothelial barrier dysfunction can be one of the therapeutic strategies to improve the outcome of inflammation, tHGA may be able to preserve vascular barrier integrity of endothelial cells following LPS-stimulated dysfunction, thereby endorsing its potential usefulness in vascular inflammatory diseases.

    Matched MeSH terms: Transendothelial and Transepithelial Migration/drug effects
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links