Displaying all 4 publications

Abstract:
Sort:
  1. Agarwal A, Sharma R, Durairajanayagam D, Cui Z, Ayaz A, Gupta S, et al.
    Urology, 2015 Mar;85(3):580-8.
    PMID: 25733269 DOI: 10.1016/j.urology.2014.11.030
    To compare the sperm protein profile between infertile men with unilateral varicocele and infertile men with bilateral varicocele.
    Matched MeSH terms: Spermatozoa/chemistry*
  2. Taib IS, Budin SB, Ghazali AR, Jayusman PA, Louis SR, Mohamed J
    Clinics (Sao Paulo), 2013 Jan;68(1):93-100.
    PMID: 23420164
    OBJECTIVE: Fenitrothion residue is found primarily in soil, water and food products and can lead to a variety of toxic effects on the immune, hepatobiliary and hematological systems. However, the effects of fenitrothion on the male reproductive system remain unclear. This study aimed to evaluate the effects of fenitrothion on the sperm and testes of male Sprague-Dawley rats.

    METHODS: A 20 mg/kg dose of fenitrothion was administered orally by gavages for 28 consecutive days. Blood sample was obtained by cardiac puncture and dissection of the testes and cauda epididymis was performed to obtain sperm. The effects of fenitrothion on the body and organ weight, biochemical and oxidative stress, sperm characteristics, histology and ultrastructural changes in the testes were evaluated.

    RESULTS: Fenitrothion significantly decreased the body weight gain and weight of the epididymis compared with the control group. Fenitrothion also decreased plasma cholinesterase activity compared with the control group. Fenitrothion altered the sperm characteristics, such as sperm concentration, sperm viability and normal sperm morphology, compared with the control group. Oxidative stress markers, such as malondialdehyde, protein carbonyl, total glutathione and glutathione S-transferase, were significantly increased and superoxide dismutase activity was significantly decreased in the fenitrothion-treated group compared with the control group. The histopathological and ultrastructural examination of the testes of the fenitrothion-treated group revealed alterations corresponding with the biochemical changes compared with the control group.

    CONCLUSION: A 20 mg/kg dose of fenitrothion caused deleterious effects on the sperm and testes of Sprague-Dawley rats.

    Matched MeSH terms: Spermatozoa/chemistry
  3. Kaka A, Wahid H, Rosnina Y, Yimer N, Khumran AM, Sarsaifi K, et al.
    Anim. Reprod. Sci., 2015 Feb;153:1-7.
    PMID: 25544152 DOI: 10.1016/j.anireprosci.2014.12.001
    The present study was conducted to determine the effects of supplementing α-linolenic acid (ALA) into BioXcell(®) extender on post-cooling, post-thawed bovine spermatozoa and post thawed fatty acid composition. Twenty-four semen samples were collected from three bulls using an electro-ejaculator. Fresh semen samples were evaluated for general motility using computer assisted semen analyzer (CASA) whereas morphology and viability with eosin-nigrosin stain. Semen samples extended into BioXcell(®) were divided into five groups to which 0, 3, 5, 10 and 15 ng/ml of ALA were added, respectively. The treated samples were incubated at 37°C for 15 min for ALA uptake by sperm cells before being cooled for 2 h at 5°C. After evaluation, the cooled samples were packed into 0.25 ml straws and frozen in liquid nitrogen for 24 h before thawing and evaluation for semen quality. Evaluation of cooled and frozen-thawed semen showed that the percentages of all the sperm parameters improved with 5 ng/ml ALA supplement. ALA was higher in all treated groups than control groups than control group. In conclusion, 5 ng/ml ALA supplemented into BioXcell(®) extender improved the cooled and frozen-thawed quality of bull spermatozoa.
    Matched MeSH terms: Spermatozoa/chemistry
  4. Kaka A, Wahid H, Rosnina Y, Yimer N, Khumran AM, Behan AA, et al.
    Reprod. Domest. Anim., 2015 Feb;50(1):29-33.
    PMID: 25366298 DOI: 10.1111/rda.12445
    The study was conducted to evaluate the effects of α-linolenic acid (ALA) on frozen-thawed quality and fatty acid composition of bull sperm. For that, twenty-four ejaculates obtained from three bulls were diluted in a Tris extender containing 0 (control), 3, 5, 10 and 15 ng/ml of ALA. Extended semen was incubated at 37°C for 15 min, to allow absorption of ALA by sperm cell membrane. The sample was chilled for 2 h, packed into 0.25-ml straws and frozen in liquid nitrogen for 24 h. Subsequently, straws were thawed and evaluated for total sperm motility (computer-assisted semen analysis), membrane functional integrity (hypo-osmotic swelling test), viability (eosin-nigrosin), fatty acid composition (gas chromatography) and lipid peroxidation (thiobarbituric acid-reactive substances (TBARS)). A higher (p < 0.05) percentage of total sperm motility was observed in ALA groups 5 ng/ml (47.74 ± 07) and 10 ng/ml (44.90 ± 0.7) in comparison with control (34.53 ± 3.0), 3 ng/ml (34.40 ± 2.6) and 15 ng/ml (34.60 ± 2.9). Still, the 5 ng/ml ALA group presented a higher (p < 0.05) percentage of viable sperms (74.13 ± 0.8) and sperms with intact membrane (74.46 ± 09) than all other experimental groups. ALA concentration and lipid peroxidation in post-thawed sperm was higher in all treated groups when compared to the control group. As such, the addition of 5 ng/ml of ALA to Tris extender improved quality of frozen-thawed bull spermatozoa.
    Matched MeSH terms: Spermatozoa/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links