Displaying all 2 publications

Abstract:
Sort:
  1. Zangeneh FZ, Shoushtari MS, Shojaee S, Aboutorabi E
    Int J Reprod Biomed, 2020 Mar;18(3):165-174.
    PMID: 32309765 DOI: 10.18502/ijrm.v18i3.6712
    Background: Polycystic ovary syndrome (PCOS) is a multifactorial and heterogeneous disease that has a potent inheritable component based on familial clustering. Despite many studies in the genetic field of PCOS, the genes that are involved in the causes of this syndrome have not been thoroughly investigated.

    Objective: The purpose of this study was to establish the occurrence of the Trp64Arg polymorphism of beta3 adrenergic receptor in non-obese women with PCOS.

    Materials and Methods: This cross-sectional study was performed on 100 women with PCOS and normal women as the control group in Imam Khomeini Hospital of Tehran in 2016-2017. Peripheral blood sample (2 cc) was obtained from two groups for genomic DNA based on the gene bank. Polymorphisms were genotyped by of using ADRB3 Trp64Arg. Then the DNA was extracted by genomic kiagen kit. The primer was analyzed for PCR based on gene bank by using Primer3 software and then confirmed by primer Blast tool at NCBI site to conformity to the beta-3 adrenergic receptor gene. The protein changes were assessment by the Clastal W software.

    Results: The sequence analysis presented in NCBI, transcript variant 1, with the code NM_000025.2, shows changes in the amino acid sequence of exon 1 in women with PCOS. Polymorphism in the codon 64 encoding the amino acid tryptophan (W) occurred in the nucleotide c.T190C, which changed the nucleotide T to C and then the amino acid sequence of the tryptophan was altered to arginine pW64R.

    Conclusion: T-C polymorphism is evident in the codon 64 of the adrenergic β3 receptor in patients with PCOS. Therefore, Beta3 adrenergic receptor gene polymorphism (Thr164Ile) associates with this syndrome in nonobese women.

    Matched MeSH terms: Receptors, Adrenergic, beta-3
  2. Zaharan NL, Muhamad NH, Jalaludin MY, Su TT, Mohamed Z, Mohamed MNA, et al.
    PMID: 29755414 DOI: 10.3389/fendo.2018.00209
    Background: Several non-synonymous single-nucleotide polymorphisms (nsSNPs) have been shown to be associated with obesity. Little is known about their associations and interactions with physical activity (PA) in relation to adiposity parameters among adolescents in Malaysia.

    Methods: We examined whether (a) PA and (b) selected nsSNPs are associated with adiposity parameters and whether PA interacts with these nsSNPs on these outcomes in adolescents from the Malaysian Health and Adolescents Longitudinal Research Team study (n = 1,151). Body mass indices, waist-hip ratio, and percentage body fat (% BF) were obtained. PA was assessed using Physical Activity Questionnaire for Older Children (PAQ-C). Five nsSNPs were included: beta-3 adrenergic receptor (ADRB3) rs4994, FABP2 rs1799883, GHRL rs696217, MC3R rs3827103, and vitamin D receptor rs2228570, individually and as combined genetic risk score (GRS). Associations and interactions between nsSNPs and PAQ-C scores were examined using generalized linear model.

    Results: PAQ-C scores were associated with % BF (β = -0.44 [95% confidence interval -0.72, -0.16], p = 0.002). The CC genotype of ADRB3 rs4994 (β = -0.16 [-0.28, -0.05], corrected p = 0.01) and AA genotype of MC3R rs3827103 (β = -0.06 [-0.12, -0.00], p = 0.02) were significantly associated with % BF compared to TT and GG genotypes, respectively. Significant interactions with PA were found between ADRB3 rs4994 (β = -0.05 [-0.10, -0.01], p = 0.02) and combined GRS (β = -0.03 [-0.04, -0.01], p = 0.01) for % BF.

    Conclusion: Higher PA score was associated with reduced % BF in Malaysian adolescents. Of the nsSNPs, ADRB3 rs4994 and MC3R rs3827103 were associated with % BF. Significant interactions with PA were found for ADRB3 rs4994 and combined GRS on % BF but not on measurements of weight or circumferences. Targeting body fat represent prospects for molecular studies and lifestyle intervention in this population.

    Matched MeSH terms: Receptors, Adrenergic, beta-3
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links