Displaying all 4 publications

Abstract:
Sort:
  1. Mun-Fun H, Ferdaos N, Hamzah SN, Ridzuan N, Hisham NA, Abdullah S, et al.
    Res Vet Sci, 2015 Oct;102:89-99.
    PMID: 26412526 DOI: 10.1016/j.rvsc.2015.07.010
    Amniotic fluid stem cells (AFSCs) are commonly isolated from mid-term amniotic fluid (AF) of animals and human collected via an invasive technique, amniocentesis. Alternatively, AFSCs could be collected at full-term. However, it is unclear whether AFSCs are present in the AF at full term. Here, we aimed to isolate and characterize stem cells isolated from AF of full term pregnant rats. Three stem cell lines have been established following immuno-selection against the stem cell marker, c-kit. Two of the new lines expressed multiple markers of pluripotency until more than passage 90. Further, they spontaneously differentiated into derivatives of the three primary germ layers through the formation of good quality embryoid bodies (EBs), and can be directly differentiated into neural lineage. Their strong stemness and potent neurogenic properties highlight the presence of highly potent stem cells in AF of full-term pregnancies, which could serve as a potential source of stem cells for regenerative medicine.
    Matched MeSH terms: Proto-Oncogene Proteins c-kit/genetics
  2. Teong YT, Teo ST, Tan LP, Wu BQ, Peh SC
    Med J Malaysia, 2006 Dec;61(5):526-33.
    PMID: 17623951 MyJurnal
    Gastrointestinal stromal tumour (GIST) is a rare but most common mesenchymal tumour in the gastrointestinal tract. Although GIST research has been carried out extensively worldwide, it has yet to be studied in Malaysia. To establish the immunohistochemical expression pattern of CD117 (c-KIT), CD34, S-100 and Desmin, the incidence of c-KIT and PDGFRA genes mutation in GISTs, and correlate it with clinicopathological parameters. Eleven clinically diagnosed GISTs were stained for CD117, CD34, Desmin and S-100 protein by immunohistochemical technique, and c-KITand PDGFRA gene mutations were studied by PCR-CSGE-DNA sequencing method. All GISTs (7 cases) stain positive for CD117, and co-expressed CD34. None of these cases express Desmin, and only one expressed S-100 protein focally. Fifty-seven percent (4/7 cases) of GIST harboured mutations at exon 11 of c-KIT gene, and they were all high risk and malignant cases. No mutation was detected at exons 9, 13 and 17 of KIT gene, and exons 12 and 18 of PDGFRA gene. Immunohistochemistry using a panel of antibodies shows consistent pattern of CD117 and CD34 expression in GIST, and mutational study may be a useful prognostic marker for kinase inhibitor treatment of GIST.
    Matched MeSH terms: Proto-Oncogene Proteins c-kit/genetics
  3. Kadivar A, Ibrahim Noordin M, Aditya A, Kamalidehghan B, Davoudi ET, Sedghi R, et al.
    Int J Mol Med, 2018 Jul;42(1):414-424.
    PMID: 29620139 DOI: 10.3892/ijmm.2018.3590
    Imatinib mesylate is an anti‑neoplastic targeted chemotherapeutic agent, which can inhibit tyrosine kinase receptors, including BCR‑ABL, platelet‑derived growth factor receptors (PDGFRs) and cKit. Cellular processes, including differentiation, proliferation and survival are regulated by these receptors. The present study aimed to evaluate the antiproliferative effects of imatinib mesylate, and its effects on apoptotic induction and cell cycle arrest in breast cancer cell lines. In addition, the study aimed to determine whether the effects of this drug were associated with the mRNA and protein expression levels of PDGFR‑β, cKit, and their corresponding ligands PDGF‑BB and stem cell factor (SCF), which may potentially modulate cell survival and proliferation. To assess the antiproliferative effects of imatinib mesylate, an MTS assay was conducted following treatment of cells with 2‑10 µM imatinib mesylate for 96, 120 and 144 h; accordingly the half maximal inhibitory concentration of imatinib mesylate was calculated for each cell line. In addition, the proapoptotic effects and cytostatic activity of imatinib mesylate were investigated. To evaluate the expression of imatinib‑targeted genes, PDGFR‑β, cKit, PDGF‑BB and SCF, under imatinib mesylate treatment, mRNA expression was detected using semi‑quantitative polymerase chain reaction and protein expression was detected by western blot analysis in ZR‑75‑1 and MDA‑MB‑231 breast carcinoma cell lines. Treatment with imatinib mesylate suppressed cell proliferation, which was accompanied by apoptotic induction and cell cycle arrest in the investigated cell lines. In addition, PDGFR‑β, PDGF‑BB, cKit and SCF were expressed in both breast carcinoma cell lines; PDGFR‑β and cKit, as imatinib targets, were downregulated in response to imatinib mesylate treatment. The present results revealed that at least two potential targets of imatinib mesylate were expressed in the two breast carcinoma cell lines studied. In conclusion, the antiproliferative, cytostatic and proapoptotic effects of imatinib mesylate may be the result of a reduction in the expression of cKit and PDGFR tyrosine kinase receptors, thus resulting in suppression of the corresponding ligand PDGF‑BB. Therefore, imatinib mesylate may be considered a promising target therapy for the future treatment of breast cancer.
    Matched MeSH terms: Proto-Oncogene Proteins c-kit/genetics*
  4. Kadivar A, Kamalidehghan B, Akbari Javar H, Karimi B, Sedghi R, Noordin MI
    Drug Des Devel Ther, 2017;11:469-481.
    PMID: 28260860 DOI: 10.2147/DDDT.S124102
    Recent cancer molecular therapies are targeting main functional molecules to control applicable process of cancer cells. Attractive targets are established by receptor tyrosine kinases, such as platelet-derived growth factor receptors (PDGFRs) and c-Kit as mostly irregular signaling, which is due to either over expression or mutation that is associated with tumorigenesis and cell proliferation. Imatinib mesylate is a selective inhibitor of receptor tyrosine kinase, including PDGFR-β and c-Kit. In this research, we studied how imatinib mesylate would exert effect on MCF7 and T-47D breast cancer and MCF 10A epithelial cell lines, the gene and protein expression of PDGFR-β, c-Kit and their relevant ligands platelet-derived growth factor (PDGF)-BB and stem cell factor (SCF). The MTS assay was conducted in therapeutic relevant concentration of 2-10 µM for 96, 120 and 144 h treatment. In addition, apoptosis induction and cytostatic activity of imatinib mesylate were investigated with the terminal deoxynucleotidyl transferase dUTP nick end labeling TUNEL and cell cycle assays, respectively, in a time-dependent manner. Comparative real-time PCR and Western blot analysis were conducted to evaluate the expression and regulation of imatinib target genes and proteins. Our finding revealed that imatinib mesylate antiproliferation effect, apoptosis induction and cytostatic activity were significantly higher in breast cancer cell lines compared to MCF 10A. This effect might be due to the expression of PDGFR-β, PDGF-BB, c-Kit and SCF, which was expressed by all examined cell lines, except the T-47D cell line which was not expressed c-Kit. However, examined gene and proteins expressed more in cancer cell lines. Therefore, imatinib mesylate was more effective on them. It is concluded that imatinib has at least two potential targets in both examined breast cancer cell lines and can be a promising drug for targeted therapy to treat breast cancer.
    Matched MeSH terms: Proto-Oncogene Proteins c-kit/genetics*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links