Displaying all 2 publications

Abstract:
Sort:
  1. Lee SK, Sirajudeen KN, Sundaram A, Zakaria R, Singh HJ
    J Physiol Biochem, 2011 Jun;67(2):249-57.
    PMID: 21210316 DOI: 10.1007/s13105-010-0070-2
    Although melatonin lowers blood pressure in spontaneously hypertensive rats (SHR), its effect following antenatal and postpartum supplementation on the subsequent development of hypertension in SHR pups remains unknown. To investigate this, SHR dams were given melatonin in drinking water (10 mg/kg body weight/day) from day 1 of pregnancy until day 21 postpartum. After weaning, a group of male pups continued to receive melatonin till the age of 16 weeks (Mel-SHR), while no further melatonin was given to another group of male pups (Maternal-Mel-SHR). Controls received plain drinking water. Systolic blood pressure (SBP) was measured at 4, 6, 8, 12 and 16 weeks of age, after which the kidneys were collected for analysis of antioxidant enzyme profiles. SBP was significantly lower till the age of 8 weeks in Maternal-Mel-SHR and Mel-SHR than that in the controls, after which no significant difference was evident in SBP between the controls and Maternal-Mel-SHR. SBP in Mel-SHR was lower than that in controls and Maternal-Mel-SHR at 12 and 16 weeks of age. Renal glutathione peroxidase (GPx) and glutathione s-transferase (GST) activities, levels of total glutathione and relative GPx-1 protein were significantly higher in Mel-SHR. GPx protein was however significantly higher in Mel-SHR. No significant differences were evident between the three groups in the activities of superoxide dismutase, catalase and glutathione reductase. In conclusion, it appears that while antenatal and postpartum melatonin supplementation decreases the rate of rise in blood pressure in SHR offspring, it however does not alter the tendency of offspring of SHR to develop hypertension.
    Matched MeSH terms: Postpartum Period/metabolism*
  2. Arbabi L, Baharuldin MT, Moklas MA, Fakurazi S, Muhammad SI
    Behav Brain Res, 2014 Sep 1;271:65-71.
    PMID: 24867329 DOI: 10.1016/j.bbr.2014.05.036
    Postpartum depression (PPD) is a psychiatric disorder that occurs in 10-15% of childbearing women. It is hypothesized that omega-3 fatty acids, which are components of fish oil, may attenuate depression symptoms. In order to examine this hypothesis, the animal model of postpartum depression was established in the present study. Ovariectomized female rats underwent hormone-simulated pregnancy (HSP) regimen and received progesterone and estradiol benzoate or vehicle for 23 days, mimicking the actual rat's pregnancy. The days after hormone termination were considered as the postpartum period. Forced feeding of menhaden fish oil, as a source of omega-3, with three doses of 1, 3, and 9g/kg/d, fluoxetine 15mg/kg/d, and distilled water 2ml/d per rat started in five postpartum-induced and one vehicle group on postpartum day 1 and continued for 15 consecutive days. On postpartum day 15, all groups were tested in the forced swimming test (FST) and open field test (OFT), followed by a biochemical assay. Results showed that the postpartum-induced rats not treated with menhaden fish oil, exhibited an increase in immobility time seen in FST, hippocampal concentration of corticosterone and plasmatic level of corticosterone, and pro-inflammatory cytokines. These depression-related effects were attenuated by supplementation of menhaden fish oil with doses of 3 and 9g/kg. Moreover, results of rats supplemented with menhaden fish oil were comparable to rats treated with the clinically effective antidepressant, fluoxetine. Taken together, these results suggest that menhaden fish oil, rich in omega-3, exerts beneficial effect on postpartum depression and decreases the biomarkers related to depression such as corticosterone and pro-inflammatory cytokines.
    Matched MeSH terms: Postpartum Period/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links