Displaying all 3 publications

Abstract:
Sort:
  1. Merican AM, Iranpour F, Amis AA
    J Orthop Res, 2009 Mar;27(3):335-9.
    PMID: 18925647 DOI: 10.1002/jor.20756
    This study investigated the effect of loading the iliotibial band (ITB) on the stability of the patellofemoral joint. We measured the restraining force required to displace the patella 10 mm medially and laterally (defined as medial and lateral stability, respectively) in 14 fresh-frozen knees from 0 to 90 degrees knee flexion. The testing rig allowed the patella to rotate and translate freely during this displacement. The quadriceps was separated into five components and loaded with 175 N total tension. Testing was performed at 0 to 90 N ITB tension. With no ITB tension, the lateral restraining force ranged from 82 to 101 N across 0 to 90 degrees flexion. Increasing ITB tension caused progressive reduction of the lateral restraining force. The maximum reduction was 25% at 60 degrees flexion and 90 N ITB tension. Medial restraining force increased progressively with increasing knee flexion and increasing ITB loads; it ranged from 74 N at 0 degrees knee flexion and 0 N ITB tension to 211 N at 90 degrees knee flexion and 90 N ITB tension. The maximum effect was an increase of medial restraining force of 50% at 90 degrees flexion and 90 N ITB tension.
    Matched MeSH terms: Patella/physiology*
  2. Merican AM, Amis AA
    J Biomech, 2009 Jul 22;42(10):1539-1546.
    PMID: 19481211 DOI: 10.1016/j.jbiomech.2009.03.041
    The iliotibial band (ITB) has an important role in knee mechanics and tightness can cause patellofemoral maltracking. This study investigated the effects of increasing ITB tension on knee kinematics. Nine fresh-frozen cadaveric knees had the components of the quadriceps loaded with 175 N. A Polaris optical tracking system was used to acquire joint kinematics during extension from 100 degrees to 0 degrees flexion. This was repeated after the following ITB loads: 30, 60 and 90 N. There was no change with 30 N load for patellar translation. On average, at 60 and 90 N, the patella translated laterally by 0.8 and 1.4mm in the mid flexion range compared to the ITB unloaded condition. The patella became more laterally tilted with increasing ITB loads by 0.7 degrees, 1.2 degrees and 1.5 degrees for 30, 60 and 90 N, respectively. There were comparable increases in patellar lateral rotation (distal patella moves laterally) towards the end of the flexion cycle. Increased external rotation of the tibia occurred from early flexion onwards and was maximal between 60 degrees and 75 degrees flexion. The increase was 5.2 degrees, 9.5 degrees and 13 degrees in this range for 30, 60 and 90 N, respectively. Increased tibial abduction with ITB loads was not observed. The combination of increased patellar lateral translation and tilt suggests increased lateral cartilage pressure. Additionally, the increased tibial external rotation would increase the Q angle. The clinical consequences and their relationship to lateral retinacular releases may be examined, now that the effects of a tight ITB are known.
    Matched MeSH terms: Patella/physiology
  3. Hébert-Losier K, Yin NS, Beaven CM, Tee CCL, Richards J
    J Electromyogr Kinesiol, 2019 Feb;44:36-45.
    PMID: 30496944 DOI: 10.1016/j.jelekin.2018.11.009
    Kinesiology-type tape (KTT) has become popular in sports for injury prevention, rehabilitation, and performance enhancement. Many cyclists use patella KTT; however, its benefits remain unclear, especially in uninjured elite cyclists. We used an integrated approach to investigate acute physiological, kinematic, and electromyographic responses to patella KTT in twelve national-level male cyclists. Cyclists completed four, 4-minute submaximal efforts on an ergometer at 100 and 200 W with and without patella KTT. Economy, energy cost, oxygen cost, heart rate, efficiency, 3D kinematics, and lower-body electromyography signals were collected over the last minute of each effort. Comfort levels and perceived change in knee stability and performance with KTT were recorded. The effects of KTT were either unclear, non-significant, or clearly trivial on all collected physiological and kinematic measures. KTT significantly, clearly, and meaningfully enhanced vastus medialis peak, mean, and integrated electromyographic signals, and vastus medialis-to-lateralis activation. Electromyographic measures from biceps femoris and biceps-to-rectus femoris activation ratio decreased in either a significant or clinically meaningful manner. Despite most cyclists perceiving KTT as comfortable, increasing stability, and improving performance, the intervention exerted no considerable effects on all physiological and kinematic measures. KTT did alter neuromuscular recruitment, which has potential implications for injury prevention.
    Matched MeSH terms: Patella/physiology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links