Displaying all 9 publications

Abstract:
Sort:
  1. Jahanshiri F, Eshaghi M, Yusoff K
    Arch Virol, 2005 Mar;150(3):611-8.
    PMID: 15592890
    The yeast two-hybrid system has been used to identify domains of the Newcastle disease virus (NDV) phosphoprotein (P) involved in self-association and interaction with the nucleocapsid protein (NP). Deletion analysis was used to map the domain(s) of the P protein involved in P:P and P:NP interactions. The C-terminal 45 amino acids (residues 247-291) were shown to play a major role in both of the interactions. Comparison of these findings with other reports suggests that paramyxoviruses are different with respect to interaction domain(s) between these two essential viral proteins involved in genome replication.
    Matched MeSH terms: Newcastle disease virus/metabolism*
  2. Chia SL, Tan WS, Shaari K, Abdul Rahman N, Yusoff K, Satyanarayanajois SD
    Peptides, 2006 Jun;27(6):1217-25.
    PMID: 16377031
    A peptide with the sequence CTLTTKLYC has previously been identified to inhibit the propagation of Newcastle disease virus (NDV) in embryonated chicken eggs and tissue culture. NDV has been classified into two main groups: the velogenic group, and mesogenic with lentogenic strains as the other group based on its dissociation constants. In this study the peptide, CTLTTKLYC, displayed on the pIII protein of a filamentous M13 phage was synthesized and mutated in order to identify the amino acid residues involved in the interactions with NDV. Mutations of C1 and K6 to A1 and A6 did not affect the binding significantly, but substitution of Y8 with A8 dramatically reduced the interaction. This suggests that Y8 plays an important role in the peptide-virus interaction. The three-dimensional structure of the peptide was determined using circular dichroism (CD), nuclear magnetic resonance (NMR), and molecular modeling. The peptide exhibited two possible conformers. One that consists of consecutive beta-turns around T2-L3-T4-T5 and K6-L7-Y8-C9. The other conformer exhibited a beta-hairpin bend type of structure with a bend around L3-T4-T5-K6.
    Matched MeSH terms: Newcastle disease virus/metabolism*
  3. Kho CL, Tan WS, Tey BT, Yusoff K
    J Gen Virol, 2003 Aug;84(Pt 8):2163-2168.
    PMID: 12867648 DOI: 10.1099/vir.0.19107-0
    The nucleocapsid protein (NP) of Newcastle disease virus expressed in E. coli assembled as ring- and herringbone-like particles. In order to identify the contiguous NP sequence essential for assembly of these particles, 11 N- or C-terminally deleted NP mutants were constructed and their ability to self-assemble was tested. The results indicate that a large part of the NP N-terminal end, encompassing amino acids 1 to 375, is required for proper folding to form a herringbone-like structure. In contrast, the C-terminal end covering amino acids 376 to 489 was dispensable for the formation of herringbone-like particles. A region located between amino acids 375 to 439 may play a role in regulating the length of the herringbone-like particles. Mutants with amino acid deletions further from the C-terminal end (84, 98, 109 and 114 amino acids) tended to form longer particles compared to mutants with shorter deletions (25 and 49 amino acids).
    Matched MeSH terms: Newcastle disease virus/metabolism*
  4. Kho CL, Tan WS, Tey BT, Yusoff K
    Arch Virol, 2004 May;149(5):997-1005.
    PMID: 15098113 DOI: 10.1007/s00705-003-0273-8
    The nucleocapsid (NP) and phospho-(P) proteins of paramyxoviruses are involved in transcription and replication of the viral genome. An in vitro protein binding assay was used to investigate the regions on NP protein that interact with the P protein of Newcastle disease virus (NDV). Truncated NP mutants were first immobilised on a solid phase and then interacted with radio-labelled [(35)S]-P protein synthesised in rabbit reticulocyte. The interaction affinity was quantitated by measuring the radioactivity that was retained on the solid phase. Using this approach, a highly interactive region was identified to be resided at the first 25 amino acids of NP N-terminus. The interaction between these two proteins remained strong even with the removal of 114 amino acids from the C-terminal end of NP. However, it is possible that the 49 amino acids at the C-terminal end might have another contact region for P protein, which is not as critical as the N-terminal end. The interaction regions mapped in this study are significantly different from the other two paramyxoviruses: Sendai and measles viruses in which the C-termini of their NP proteins play an important role in binding to the P.
    Matched MeSH terms: Newcastle disease virus/metabolism*
  5. Tan YP, Ling TC, Yusoff K, Tan WS, Tey BT
    J Microbiol, 2005 Jun;43(3):295-300.
    PMID: 15995649
    In the present study, the performances of conventional purification methods, packed bed adsorption (PBA), and expanded bed adsorption (EBA) for the purification of the nucleocapsid protein (NP) of Newcastle disease virus (NDV) from Escherichia coli homogenates were evaluated. The conventional methods for the recovery of NP proteins involved multiple steps, such as centrifugation, precipitation, dialysis, and sucrose gradient ultracentrifugation. For the PBA, clarified feedstock was used for column loading, while in EBA, unclarified feedstock was used. Streamline chelating immobilized with Ni2+ ion was used as an affinity ligand for both PBA and EBA. The final protein yield obtained in conventional and PBA methods was 1.26% and 5.56%, respectively. It was demonstrated that EBA achieved the highest final protein yield of 9.6% with a purification factor of 7. Additionally, the total processing time of the EBA process has been shortened by 8 times compared to that of the conventional method.
    Matched MeSH terms: Newcastle disease virus/metabolism*
  6. Mohamed Amin Z, Che Ani MA, Tan SW, Yeap SK, Alitheen NB, Syed Najmuddin SUF, et al.
    Sci Rep, 2019 Sep 30;9(1):13999.
    PMID: 31570732 DOI: 10.1038/s41598-019-50222-z
    The Newcastle disease virus (NDV) strain AF2240 is an avian avulavirus that has been demonstrated to possess oncolytic activity against cancer cells. However, to illicit a greater anti-cancer immune response, it is believed that the incorporation of immunostimulatory genes such as IL12 into a recombinant NDV backbone will enhance its oncolytic effect. In this study, a newly developed recombinant NDV that expresses IL12 (rAF-IL12) was tested for its safety, stability and cytotoxicity. The stability of rAF-IL12 was maintained when passaged in specific pathogen free (SPF) chicken eggs from passage 1 to passage 10; with an HA titer of 29. Based on the results obtained from the MTT cytotoxic assay, rAF-IL12 was determined to be safe as it only induced cytotoxic effects against normal chicken cell lines and human breast cancer cells while sparing normal cells. Significant tumor growth inhibition (52%) was observed in the rAF-IL12-treated mice. The in vivo safety profile of rAF-IL12 was confirmed through histological observation and viral load titer assay. The concentration and presence of the expressed IL12 was quantified and verified via ELISA assay. In summary, rAF-IL12 was proven to be safe, selectively replicating in chicken and cancer cells and was able to maintain its stability throughout several passages; thus enhancing its potential as an anti-breast cancer vaccine.
    Matched MeSH terms: Newcastle disease virus/metabolism
  7. Ghrici M, El Zowalaty M, Omar AR, Ideris A
    Int J Mol Med, 2013 Mar;31(3):525-32.
    PMID: 23337979 DOI: 10.3892/ijmm.2013.1244
    Newcastle disease virus (NDV) AF2240 Malaysian strain is a very virulent avian virus. NDV strain AF2240 was previously demonstrated to induce apoptosis in human breast carcinoma MCF-7 cells. However, at which stage of the NDV life cycle apoptosis is induced and whether NDV replication and protein synthesis are involved in apoptosis induction have yet to be determined. In the present study, we investigated the time course of NDV strain AF2240 nucleoprotein (NP) gene expression and the early apoptotic signs in the form of activation of caspase-8 and mitochondrial transition pore opening. In addition, the induction of apoptosis by both ultraviolet-inactivated and cycloheximide-treated NDV-infected MCF-7 cells were examined. Our findings showed that NDV strain AF2240 induced apoptosis at 1 h post-infection (pi) through activation of mitochondrial transition pore opening and at 2 h through activation of caspase-8, while the NP gene was expressed at 6 h pi. The induced apoptosis was independent of both virus replication and protein synthesis. In conclusion, NDV strain AF2240 induces apoptosis at an early stage of its life cycle, possibly during virus binding or fusion with the cell membrane. The mitochondrial-related pathway may be the central activator in NDV strain AF2240-induced apoptosis.
    Matched MeSH terms: Newcastle disease virus/metabolism*
  8. Rabu A, Tan WS, Kho CL, Omar AR, Yusoff K
    Acta Virol., 2002;46(4):211-7.
    PMID: 12693857
    The nucleocapsid (NP) protein of Newcastle disease virus (NDV) self-assembled in Escherichia coli as ring-like and herringbone-like particles. Several chimeric NP proteins were constructed in which the antigenic regions of the hemagglutinin-neuraminidase (HN) and fusion (F) proteins of NDV, myc epitope, and six histidines (a hexa-His tag) were linked to the C-terminus of the NP monomer. These chimeric proteins were expressed efficiently in soluble form in E. coli as detected by Western blot analysis. Electron microscopy of the purified products revealed that they self-assembled into ring-like particles. These chimeric particles exhibited antigenicity of the myc epitope, suggesting that the foreign sequences were exposed on the surface of the particles. Chickens inoculated with the chimeric particles mounted an immune response against NDV, suggesting the possibility of use of the ring-like particle as a carrier of immunogens in subunit vaccines and immunological reagents.
    Matched MeSH terms: Newcastle disease virus/metabolism
  9. Ghrici M, El Zowalaty M, Omar AR, Ideris A
    Oncol Rep, 2013 Sep;30(3):1035-44.
    PMID: 23807159 DOI: 10.3892/or.2013.2573
    Newcastle disease virus (NDV) exerts its naturally occurring oncolysis possibly through the induction of apoptosis. We hypothesized that the binding of the virus to the cell via the hemagglutinin-neuraminidase (HN) glycoprotein may be sufficient to not only induce apoptosis but to induce a higher apoptosis level than the parental NDV AF2240 virus. NDV AF2240 induction of apoptosis in MCF-7 human breast cancer cells was analyzed and quantified. In addition, the complete HN gene of NDV strain AF2240 was amplified, sequenced and cloned into the pDisplay eukaryotic expression vector. HN gene expression was first detected at the cell surface membrane of the transfected MCF-7 cells. HN induction of apoptosis in transfected MCF-7 cells was analyzed and quantified. The expression of the HN gene alone was able to induce apoptosis in MCF-7 cells but it was a less potent apoptosis inducer compared to the parental NDV AF2240 strain. In conclusion, the NDV AF2240 strain is a more suitable antitumor candidate agent than its recombinant HN gene unless the latter is further improved by additional modifications.
    Matched MeSH terms: Newcastle disease virus/metabolism*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links