Displaying all 9 publications

Abstract:
Sort:
  1. Ahmad, N. Z., Aini Ismafairus, A. H., Khairiah, A. H., Wan Ahmad Kamil, W. A., Mazlyfarina, M., Hanani, A. M.
    MyJurnal
    Introduction: This multiple-subject fMRI study continue to further investigate brain activation within and effective connectivity between the significantly (p
    Matched MeSH terms: Nervous System Physiological Phenomena
  2. Noh NA, Fuggetta G, Manganotti P
    Malays J Med Sci, 2015 Dec;22(Spec Issue):36-44.
    PMID: 27006636 MyJurnal
    Transcranial magnetic stimulation (TMS) is a non-invasive tool that is able to modulate the electrical activity of the brain depending upon its protocol of stimulation. Theta burst stimulation (TBS) is a high-frequency TMS protocol that is able to induce prolonged plasticity changes in the brain. The induction of plasticity-like effects by TBS is useful in both experimental and therapeutic settings; however, the underlying neural mechanisms of this modulation remain unclear. The aim of this study was to investigate the effects of continuous TBS (cTBS) on the intrahemispheric and interhemispheric functional connectivity of the resting and active brain.
    Matched MeSH terms: Nervous System Physiological Phenomena
  3. Selvanayagam VS, Riek S, DE Rugy A, Carroll TJ
    Med Sci Sports Exerc, 2016 09;48(9):1835-46.
    PMID: 27116648 DOI: 10.1249/MSS.0000000000000956
    PURPOSE: Goal-directed movements tend to resemble the characteristics of previously executed actions. Here we investigated whether a single bout of strength training, which typically involves stereotyped actions requiring strong neural drive, can bias subsequent aiming behavior toward the direction of trained forces.

    METHODS: In experiment 1 (n = 10), we tested the direction of force exerted in an isometric aiming task before and after 40 repetitions of 2-s maximal-force ballistic contractions toward a single directional target. In experiment 2 (n = 12), each participant completed three training conditions in a counterbalanced crossover design. In two conditions, both the aiming task and the training were conducted in the same (neutral) forearm posture. In one of these conditions, the training involved weak forces to determine whether the level of neural drive during training influences the degree of bias. In the third condition, high-force training contractions were performed in a 90° pronated forearm posture, whereas the low-force aiming task was performed in a neutral forearm posture. This dissociated the extrinsic training direction from the pulling direction of the trained muscles during the aiming task.

    RESULTS: In experiment 1, we found that aiming direction was biased toward the training direction across a large area of the work space (approximately ±135°; tested for 16 targets spaced 22.5° apart), whereas in experiment 2, we found systematic bias in aiming toward the training direction defined in extrinsic space, but only immediately after high-force contractions.

    CONCLUSION: Our findings suggest that bias effects of training involving strong neural drive generalize broadly to untrained movement directions and are expressed according to extrinsic rather than muscle-based coordinates.

    Matched MeSH terms: Nervous System Physiological Phenomena*
  4. Wolff GH, Riffell JA
    J Exp Biol, 2018 02 27;221(Pt 4).
    PMID: 29487141 DOI: 10.1242/jeb.157131
    Mosquitoes are best known for their proclivity towards biting humans and transmitting bloodborne pathogens, but there are over 3500 species, including both blood-feeding and non-blood-feeding taxa. The diversity of host preference in mosquitoes is exemplified by the feeding habits of mosquitoes in the genus Malaya that feed on ant regurgitation or those from the genus Uranotaenia that favor amphibian hosts. Host preference is also by no means static, but is characterized by behavioral plasticity that allows mosquitoes to switch hosts when their preferred host is unavailable and by learning host cues associated with positive or negative experiences. Here we review the diverse range of host-preference behaviors across the family Culicidae, which includes all mosquitoes, and how adaptations in neural circuitry might affect changes in preference both within the life history of a mosquito and across evolutionary time-scales.
    Matched MeSH terms: Nervous System Physiological Phenomena*
  5. Idris Z, Zakaria Z, Yee AS, Fitzrol DN, Ghani ARI, Abdullah JM, et al.
    Brain Sci, 2021 Apr 28;11(5).
    PMID: 33925002 DOI: 10.3390/brainsci11050558
    The concept of wholeness or oneness refers to not only humans, but also all of creation. Similarly, consciousness may not wholly exist inside the human brain. One consciousness could permeate the whole universe as limitless energy; thus, human consciousness can be regarded as limited or partial in character. According to the limited consciousness concept, humans perceive projected waves or wave-vortices as a waveless item. Therefore, human limited consciousness collapses the wave function or energy of particles; accordingly, we are only able to perceive them as particles. With this "limited concept", the wave-vortex or wave movement comes into review, which also seems to have a limited concept, i.e., the limited projected wave concept. Notably, this wave-vortex seems to embrace photonic light, as well as electricity and anything in between them, which gives a sense of dimension to our brain. These elements of limited projected wave-vortex and limitless energy (consciousness) may coexist inside our brain as electric (directional pilot wave) and quantum (diffused oneness of waves) brainwaves, respectively, with both of them giving rise to one brain field. Abnormality in either the electrical or the quantum field or their fusion may lead to abnormal brain function.
    Matched MeSH terms: Nervous System Physiological Phenomena
  6. Omar H, Ahmad AL, Hayashi N, Idris Z, Abdullah JM
    Malays J Med Sci, 2015 Dec;22(Spec Issue):20-8.
    PMID: 27006634 MyJurnal
    Magnetoencephalography (MEG) has been extensively used to measure small-scale neuronal brain activity. Although it is widely acknowledged as a sensitive tool for deciphering brain activity and source localisation, the accuracy of the MEG system must be critically evaluated. Typically, on-site calibration with the provided phantom (Local phantom) is used. However, this method is still questionable due to the uncertainty that may originate from the phantom itself. Ideally, the validation of MEG data measurements would require cross-site comparability.
    Matched MeSH terms: Nervous System Physiological Phenomena
  7. Parida S, Dehuri S, Cho SB, Cacha LA, Poznanski RR
    J Integr Neurosci, 2015 Sep;14(3):355-68.
    PMID: 26455882 DOI: 10.1142/S0219635215500223
    Functional magnetic resonance imaging (fMRI) makes it possible to detect brain activities in order to elucidate cognitive-states. The complex nature of fMRI data requires under-standing of the analyses applied to produce possible avenues for developing models of cognitive state classification and improving brain activity prediction. While many models of classification task of fMRI data analysis have been developed, in this paper, we present a novel hybrid technique through combining the best attributes of genetic algorithms (GAs) and ensemble decision tree technique that consistently outperforms all other methods which are being used for cognitive-state classification. Specifically, this paper illustrates the combined effort of decision-trees ensemble and GAs for feature selection through an extensive simulation study and discusses the classification performance with respect to fMRI data. We have shown that our proposed method exhibits significant reduction of the number of features with clear edge classification accuracy over ensemble of decision-trees.
    Matched MeSH terms: Nervous System Physiological Phenomena
  8. Schaefer A, Buratto LG, Goto N, Brotherhood EV
    PLoS One, 2016 09 22;11(9):e0163150.
    PMID: 27658301 DOI: 10.1371/journal.pone.0163150
    A large body of evidence shows that buying behaviour is strongly determined by consumers' price expectations and the extent to which real prices violate these expectations. Despite the importance of this phenomenon, little is known regarding its neural mechanisms. Here we show that two patterns of electrical brain activity known to index prediction errors-the Feedback-Related Negativity (FRN) and the feedback-related P300 -were sensitive to price offers that were cheaper than participants' expectations. In addition, we also found that FRN amplitude time-locked to price offers predicted whether a product would be subsequently purchased or not, and further analyses suggest that this result was driven by the sensitivity of the FRN to positive price expectation violations. This finding strongly suggests that ensembles of neurons coding positive prediction errors play a critical role in real-life consumer behaviour. Further, these findings indicate that theoretical models based on the notion of prediction error, such as the Reinforcement Learning Theory, can provide a neurobiologically grounded account of consumer behavior.
    Matched MeSH terms: Nervous System Physiological Phenomena
  9. Lim SY, Tan AH, Lim JL, Ahmad-Annuar A
    J Mov Disord, 2018 May;11(2):87-88.
    PMID: 29860787 DOI: 10.14802/jmd.18004
    Purposeless groaning has been reported in advanced progressive supranuclear palsy. We present a case of purposeless groaning occurring as a primary complaint in a patient with advanced Parkinson's disease. Purposeless groaning is thought to be a manifestation of disinhibition and perseveration due to frontal-subcortical dysfunction. Proper recognition of this phenomenon will help clinicians to avoid unnecessary investigations and treatment (e.g., prescription of opioid medications).
    Matched MeSH terms: Nervous System Physiological Phenomena
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links