Displaying all 3 publications

Abstract:
Sort:
  1. Berki DM, Liu L, Choon SE, David Burden A, Griffiths CEM, Navarini AA, et al.
    J Invest Dermatol, 2015 Dec;135(12):2964-2970.
    PMID: 26203641 DOI: 10.1038/jid.2015.288
    Caspase recruitment family member 14 (CARD14, also known as CARMA2), is a scaffold protein that mediates NF-κB signal transduction in skin keratinocytes. Gain-of-function CARD14 mutations have been documented in familial forms of psoriasis vulgaris (PV) and pityriasis rubra pilaris (PRP). More recent investigations have also implicated CARD14 in the pathogenesis of pustular psoriasis. Follow-up studies, however, have been limited, so that it is not clear to what extent CARD14 alleles account for the above conditions. Here, we sought to address this question by carrying out a systematic CARD14 analysis in an extended patient cohort (n=416). We observed no disease alleles in subjects with familial PV (n=159), erythrodermic psoriasis (n=23), acral pustular psoriasis (n=100), or sporadic PRP (n=29). Conversely, our analysis of 105 individuals with generalized pustular psoriasis (GPP) identified a low-frequency variant (p.Asp176His) that causes constitutive CARD14 oligomerization and shows a significant association with GPP in Asian populations (P=8.4×10(-5); odds ratio=6.4). These data indicate that the analysis of CARD14 mutations could help stratify pustular psoriasis cohorts but would be mostly uninformative in the context of psoriasis and sporadic PRP.
    Matched MeSH terms: NF-kappa B/physiology
  2. Abdulamir AS, Hafidh RR, Abubakar F
    Scand J Clin Lab Invest, 2009;69(4):487-95.
    PMID: 19347746 DOI: 10.1080/00365510902749131
    To examine differences in the apoptotic, inflammatory, allergic and immunological features in the lungs of adults with asthma.
    Matched MeSH terms: NF-kappa B/physiology*
  3. Song S, Dang M, Kumar M
    Inflammopharmacology, 2019 Dec;27(6):1243-1254.
    PMID: 30826930 DOI: 10.1007/s10787-019-00569-6
    P38 mitogen-activated protein kinase (p38 MAPK), a tissue inflammatory factor can be activated under oxidative stress and in conditions associated with hyperglycemia. Gingerol containing various natural herbs has been extensively studied for its pharmacological actions both in reducing the inflammation and as immunity booster. The aim of the current investigation was to examine the renal protective effect of gingerol in high-fat diet/streptozotocin-induced type II diabetes mellitus in a rat model.NRK 52E cells were divided into normal and high glucose group treated with gingerol. The methylthiazotetrazolium assay was used to establish the cell proliferation progress. Streptozotocin-inducted diabetes in rats was treated with gingerol for 16 weeks. The blood glucose, serum creatinine, body weight, food intake, biochemical, antioxidant and haematological parameters were assayed to establish the correlation. Pro-inflammatory cytokines including Il-1β, IL-6, TNF-α; inflammatory mediator COX-2, PGE2, NF-kB, p38MAPK, and TGF-β, were also determined to assess the molecular mechanism. Gingerol exhibited the protective effect on the high glucose level induced NRK 52E cells and did not show any effect on the normal cells. Gingerol significantly (P kappa B (N-κB) activation, renal p38MAPK, and TGF-β. From these studies it is possible to predict that gingerol plays a significant role in improving the condition of renal tissue by alteration in p38MAPK and NF-κB activity, and control inflammatory reaction and oxidative stress. Our investigation supports the clinical use of gingerol in future as an effective renal protective agent.
    Matched MeSH terms: NF-kappa B/physiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links