Displaying all 2 publications

Abstract:
Sort:
  1. Yew SM, Chan CL, Ngeow YF, Toh YF, Na SL, Lee KW, et al.
    Sci Rep, 2016 05 31;6:27008.
    PMID: 27243961 DOI: 10.1038/srep27008
    Cladosporium sphaerospermum, a dematiaceous saprophytic fungus commonly found in diverse environments, has been reported to cause allergy and other occasional diseases in humans. However, its basic biology and genetic information are largely unexplored. A clinical isolate C. sphaerospermum genome, UM 843, was re-sequenced and combined with previously generated sequences to form a model 26.89 Mb genome containing 9,652 predicted genes. Functional annotation on predicted genes suggests the ability of this fungus to degrade carbohydrate and protein complexes. Several putative peptidases responsible for lung tissue hydrolysis were identified. These genes shared high similarity with the Aspergillus peptidases. The UM 843 genome encodes a wide array of proteins involved in the biosynthesis of melanin, siderophores, cladosins and survival in high salinity environment. In addition, a total of 28 genes were predicted to be associated with allergy. Orthologous gene analysis together with 22 other Dothideomycetes showed genes uniquely present in UM 843 that encode four class 1 hydrophobins which may be allergens specific to Cladosporium. The mRNA of these hydrophobins were detected by RT-PCR. The genomic analysis of UM 843 contributes to the understanding of the biology and allergenicity of this widely-prevalent species.
    Matched MeSH terms: Mycoses/immunology
  2. Chan GF, Puad MS, Chin CF, Rashid NA
    Folia Microbiol (Praha), 2011 Sep;56(5):459-67.
    PMID: 21909832 DOI: 10.1007/s12223-011-0070-9
    Despite the great importance of Aureobasidium pullulans in biotechnology, the fungus had emerged as an opportunistic human pathogen, especially among immunocompromised patients. Clinical detection of this rare human fungal pathogen presently relies on morphology diagnosis which may be misleading. Thus, a sensitive and accurate quantitative molecular assay for A. pullulans remains lacking. In this study, we presented the microscopy observations of A. pullulans that reveals the phenotypic plasticity of the fungus. A. pullulans-specific primers and molecular beacon probes were designed based on the fungal 18S ribosomal RNA (rRNA) gene. Comparison of two probes with varied quencher chemistry, namely BHQ-1 and Tamra, revealed high amplification efficiency of 104% and 108%, respectively. The optimized quantitative real-time PCR (qPCR) assays could detect and quantify up to 1 pg concentration of A. pullulans DNA. Both assays displayed satisfactory performance parameters at fast thermal cycling mode. The molecular assay has great potential as a molecular diagnosis tool for early detection of fungal infection caused by A. pullulans, which merits future study in clinical diagnosis.
    Matched MeSH terms: Mycoses/immunology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links