Displaying all 4 publications

Abstract:
Sort:
  1. Intan Sakinah MA, Suzianti IV, Latiffah Z
    Genet. Mol. Res., 2014;13(2):3627-37.
    PMID: 24854442 DOI: 10.4238/2014.May.9.5
    Anthracnose caused by Colletotrichum species is a common postharvest disease of banana fruit. We investigated and identified Colletotrichum species associated with anthracnose in several local banana cultivars based on morphological characteristics and sequencing of ITS regions and of the β-tubulin gene. Thirty-eight Colletotrichum isolates were encountered in anthracnose lesions of five local banana cultivars, 'berangan', 'mas', 'awak', 'rastali', and 'nangka'. Based on morphological characteristics, 32 isolates were identified as Colletotrichum gloeosporioides and 6 isolates as C. musae. C. gloeosporioides isolates were divided into two morphotypes, with differences in colony color, shape of the conidia and growth rate. Based on ITS regions and β-tubulin sequences, 35 of the isolates were identified as C. gloeosporioides and only 3 isolates as C. musae; the percentage of similarity from BLAST ranged from 95-100% for ITS regions and 97-100% for β-tubulin. C. gloeosporioides isolates were more prevalent compared to C. musae. This is the first record of C. gloeosporioides associated with banana anthracnose in Malaysia. In a phylogenetic analysis of the combined dataset of ITS regions and β-tubulin using a maximum likelihood method, C. gloeosporioides and C. musae isolates were clearly separated into two groups. We concluded that C. gloeosporioides and C. musae isolates are associated with anthracnose in the local banana cultivars and that C. gloeosporioides is more prevalent than C. musae.
    Matched MeSH terms: Musa/growth & development
  2. Kheng TY, Ding P, Abdul Rahman NA
    J Sci Food Agric, 2012 Jan 15;92(1):171-6.
    PMID: 21780132 DOI: 10.1002/jsfa.4559
    A series of physico-chemical quality (peel and pulp colours, pulp firmness, fruit pH, sugars and acids content, respiration rate and ethylene production) were conducted to study the optimum harvest periods (either week 11 or week 12 after emergence of the first hand) of Rastali banana (Musa AAB Rastali) based on the fruit quality during ripening.
    Matched MeSH terms: Musa/growth & development
  3. Sipen P, Anthony P, Davey MR
    Cryo Letters, 2011 May-Jun;32(3):197-205.
    PMID: 21766149
    The effect of preculture with different sugars and mannitol on cryopreservation of scalps of the banana (Musa) cvs. Pisang Mas, Pisang Nangka, Pisang Berangan and Pisang Awak was investigated. Scalps (0.3 square cm) were precultured on semi-solid MS-based medium, containing 0.4 or 0.5 M sucrose, glucose, fructose, trehalose or mannitol, for 14 days under a 16 h light and 8 h dark photoperiod prior to rapid cooling and storage in liquid nitrogen. Explants were rewarmed rapidly in a water bath at 40 degree C for 1 min, followed by recovery on two layers of sterile filter paper overlaying 25 ml aliquots of semi-solid MS-based medium with 5 mg per liter benzylaminopurine, 0.2 mg per liter indole acetic acid and 10 mg per liter ascorbic acid (PM8 medium) for 2 days in the dark. Subsequently, scalps were transferred onto 25 ml aliquots of semi-solid PM8 medium and incubated in the dark for 1 week prior to incubation in the light. Shoot regeneration from 5 - 48 percent of cryopreserved scalps of all the banana cvs., was observed only following preculture with 0.4 or 0.5 M glucose or fructose, and with 0.4 M trehalose for the cvs. Pisang Berangan and Pisang Awak. Preculture with 0.4 M glucose resulted in maximum shoot regeneration of cryopreserved scalps of 10 percent, 13 percent, 42 percent and 48 percent for the cvs. Pisang Mas, Pisang Nangka, Pisang Berangan and Pisang Awak, respectively. Concentrations of 0.5 M trehalose, or 0.4 and 0.5 M sucrose or mannitol were extremely toxic to scalps of all the cvs. investigated.
    Matched MeSH terms: Musa/growth & development*
  4. Wang Z, Huang S, Jia C, Liu J, Zhang J, Xu B, et al.
    Plant Cell Rep, 2013 Sep;32(9):1373-80.
    PMID: 23652818 DOI: 10.1007/s00299-013-1449-7
    KEY MESSAGE: Three tau class MaGSTs responded to abiotic stress, MaGSTF1 and MaGSTL1 responded to signaling molecules, they may play an important role in the growth of banana plantlet. Glutathione S-transferases (GST) are multifunctional detoxification enzymes that participate in a variety of cellular processes, including stress responses. In this study, we report the molecular characteristics of five GST genes (MaGSTU1, MaGSTU2, MaGSTU3, MaGSTF1 and MaGSTL1) cloned from banana (Musa acuminate L. AAA group, cv. Cavendish) using a RACE-PCR-based strategy. The predicted molecular masses of these GSTs range from 23.4 to 27.7 kDa and their pIs are acidic. At the amino acid level, they share high sequence similarity with GSTs in the banana DH-Pahang (AA group) genome. Phylogenetic analysis showed that the deduced amino acid sequences of MaGSTs also have high similarity to GSTs of other plant species. Expression analysis by semi-quantitative RT-PCR revealed that these genes are differentially expressed in various tissues. In addition, their expression is regulated by various stress conditions, including exposure to signaling molecules, cold, salinity, drought and Fusarium oxysporum f specialis(f. Sp) cubense Tropical Race 4 (Foc TR4) infection. The expression of the tau class MaGSTs (MaGSTU1, MaGSTU2 and MaGSTU3) mainly responded to cold, salinity and drought while MaGSTF1 and MaGSTL1 expressions were upregulated by signaling molecules. Our findings suggest that MaGSTs play a key role in both development and abiotic stress responses.
    Matched MeSH terms: Musa/growth & development
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links