Displaying all 5 publications

Abstract:
Sort:
  1. Rapeah S, Dhaniah M, Nurul AA, Norazmi MN
    Trop Biomed, 2010 Dec;27(3):461-9.
    PMID: 21399587 MyJurnal
    Macrophages are involved in innate immunity against malaria due to their ability to phagocytose infected erythrocytes and produce inflammatory cytokines, which are important for controlling parasite growth during malaria infection. In this study, the ability of a recombinant BCG (rBCG) vaccine expressing the 19-kDa C-terminus of merozoite surface protein-1 (MSP1-C) of Plasmodium falciparum, to stimulate the phagocytic activity and secretion of pro-inflammatory cytokines by the macrophage cell line J774A.1 was measured at varying times. The results demonstrate the ability of the rBCG construct to activate the inflammatory action of macrophages, which is important as a first-line of defence in clearing malaria infections.
    Matched MeSH terms: Malaria Vaccines/genetics
  2. Cheong FW, Fong MY, Lau YL, Mahmud R
    Malar J, 2013;12:454.
    PMID: 24354660 DOI: 10.1186/1475-2875-12-454
    Plasmodium knowlesi is the fifth Plasmodium species that can infect humans. The Plasmodium merozoite surface protein-1(42) (MSP-1(42)) is a potential candidate for malaria vaccine. However, limited studies have focused on P. knowlesi MSP-1(42).
    Matched MeSH terms: Malaria Vaccines/genetics
  3. Nurul AA, Norazmi MN
    Parasitol Res, 2011 Apr;108(4):887-97.
    PMID: 21057812 DOI: 10.1007/s00436-010-2130-5
    Vaccine development against the blood-stage malaria parasite is aimed at reducing the pathology of the disease. We constructed a recombinant Mycobacterium bovis bacille Calmette Guerin (rBCG) expressing the 19 kDa C-terminus of Plasmodium falciparum merozoite surface protein-1 (MSP-1(19)) to evaluate its protective ability against merozoite invasion of red blood cells in vitro. A mutated version of MSP-1(19), previously shown to induce the production of inhibitory but not blocking antibodies, was cloned into a suitable shuttle plasmid and transformed into BCG Japan (designated rBCG016). A native version of the molecule was also cloned into BCG (rBCG026). Recombinant BCG expressing the mutated version of MSP-1(19) (rBCG016) elicited enhanced specific immune response against the epitope in BALB/c mice as compared to rBCG expressing the native version of the epitope (rBCG026). Sera from rBCG016-immunized mice contained significant levels of specific IgG, especially of the IgG2a subclass, against MSP-1(19) as determined by enzyme-linked immunosorbent assay. The sera was reactive with fixed P. falciparum merozoites as demonstrated by indirect immunofluorescence assay (IFA) and inhibited merozoite invasion of erythrocytes in vitro. Furthermore, lymphocytes from rBCG016-immunized mice demonstrated higher proliferative response against the MSP-1(19) antigen as compared to those of rBCG026- and BCG-immunized animals. rBCG expressing the mutated version of MSP-1(19) of P. falciparum induced enhanced humoral and cellular responses against the parasites paving the way for the rational use of rBCG as a blood-stage malaria vaccine candidate.
    Matched MeSH terms: Malaria Vaccines/genetics
  4. Teo WH, Nurul AA, Norazmi MN
    Trop Biomed, 2012 Jun;29(2):239-53.
    PMID: 22735846 MyJurnal
    The Plasmodium falciparum serine repeat antigen (SERA) is one of the promising blood-stage malarial vaccine candidates. In this study, recombinant Mycobacterium bovis bacille Calmette-Guerin (rBCG) expressing the 22 kDa protein (SE22) from the 47 kDa Nterminal domain of serine repeat antigen (SERA), generated in favour of mycobacterium codon usage, elicited specific immune response in BALB/c mice with a mixed Th1/Th2 profile. Immunized sera containing high levels of specific IgG1 and IgG2a against the epitope (as determined by ELISA) were reactive with fixed P. falciparum merozoites as demonstrated by indirect immunofluorescence assay (IFA). Furthermore, the lymphocyte proliferative response to SE22 antigen from rBCG-immunized mice was higher than that of controls. The expression of intracellular cytokines (IL-2, IL-4 and IFNγ) in CD4+- and CD8+-cells was also enhanced following in-vitro stimulation with SE22. These findings indicate that a rBCG-based vaccine candidate expressing a blood-stage antigen of P. falciparum could enhance both humoral and cellular immune responses, thus paving the way for the rational use of rBCG as a vaccine candidate against malaria.
    Matched MeSH terms: Malaria Vaccines/genetics
  5. Othman AS, Marin-Mogollon C, Salman AM, Franke-Fayard BM, Janse CJ, Khan SM
    Expert Rev Vaccines, 2017 Jul;16(7):1-13.
    PMID: 28525963 DOI: 10.1080/14760584.2017.1333426
    INTRODUCTION: Transgenic malaria parasites expressing foreign genes, for example fluorescent and luminescent proteins, are used extensively to interrogate parasite biology and host-parasite interactions associated with malaria pathology. Increasingly transgenic parasites are also exploited to advance malaria vaccine development. Areas covered: We review how transgenic malaria parasites are used, in vitro and in vivo, to determine protective efficacy of different antigens and vaccination strategies and to determine immunological correlates of protection. We describe how chimeric rodent parasites expressing P. falciparum or P. vivax antigens are being used to directly evaluate and rank order human malaria vaccines before their advancement to clinical testing. In addition, we describe how transgenic human and rodent parasites are used to develop and evaluate live (genetically) attenuated vaccines. Expert commentary: Transgenic rodent and human malaria parasites are being used to both identify vaccine candidate antigens and to evaluate both sub-unit and whole organism vaccines before they are advanced into clinical testing. Transgenic parasites combined with in vivo pre-clinical testing models (e.g. mice) are used to evaluate vaccine safety, potency and the durability of protection as well as to uncover critical protective immune responses and to refine vaccination strategies.
    Matched MeSH terms: Malaria Vaccines/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links