Displaying all 4 publications

Abstract:
Sort:
  1. Choong CE, Ibrahim S, Yoon Y, Jang M
    Ecotoxicol Environ Saf, 2018 Feb;148:142-151.
    PMID: 29040822 DOI: 10.1016/j.ecoenv.2017.10.025
    In this work, palm shell waste powder activated carbon coated by magnesium silicate (PPAC-MS) were synthesized by the impregnation of magnesium silicate (MgSiO3) using economical material (silicon dioxide powder) via mild hydrothermal approach for the first time. As an effective adsorbent, PPAC-MS simultaneously removes BPA and Pb(II) in single and binary mode. Surprisingly, PPAC-MS exhibited a homogeneous thin plate mesh-like structure, as well as meso- and macropores with a high surface area of 772.1m2g-1. Due to its specific morphological characteristics, PPAC-MS had adsorption capacities of Pb(II) as high as 419.9mgg-1 and 408.8mgg-1 in single mode and binary mode based on Freudliuch isotherm model while those for BPA by PPAC-MS were 168.4mgg-1 and 254.7mgg-1 for single mode and binary modes corresponding to Langmuir isotherm model. Experiment results also indicated that the synergistic removal of BPA occurred because the precipitation process of Pb(II) leads to the co-precipitation of BPA with Pb(OH)2 compound. PPAC-MS showed a good reusability for 5 regeneration cycles using Mg(II) solution followed by thermal treatment. Overall, PPAC-MS has a high potential in the treatment process for wastewater containing both toxic heavy metals and emerging pollutants due to its high sorption capacities and reusability.
    Matched MeSH terms: Magnesium Silicates/chemistry*
  2. Choong CE, Wong KT, Jang SB, Nah IW, Choi J, Ibrahim S, et al.
    Chemosphere, 2020 Jan;239:124765.
    PMID: 31520981 DOI: 10.1016/j.chemosphere.2019.124765
    In this study, palm shell activated carbon powder (PSAC) and magnesium silicate (MgSiO3) modified PSAC (MPSAC) were thoroughly investigated for fluoride (F-) adsorption. F- adsorption isotherms showed that PSAC and MPSAC over-performed some other reported F- adsorbents with adsorption capacities of 116 mg g-1 and 150 mg g-1, respectively. Interestingly, the MgSiO3 impregnated layer changed the adsorption behavior of F- from monolayer to heterogeneous multilayer based on the Langmuir and Freundlich isotherm models verified by chi-square test (X2). Thermodynamic parameters indicated that the F- adsorption on PSAC and MPSAC was spontaneous and exothermic. PSAC and MPSAC were characterized using FESEM-EDX, XRD, FTIR and XPS to investigate the F- adsorption mechanism. Based on the regeneration tests using NaOH (0.01 M), PSAC exhibited poor regeneration (<20%) while MPSAC had steady adsorption efficiencies (∼70%) even after 5 regeneration cycles. This is due to highly polarized C-F bond was found on PSAC while Mg-F bond was distinguished on MPSAC, evidently denoting that the F- adsorption is mainly resulted from the exchange of hydroxyl (-OH) group. It was concluded that PSAC would be a potential adsorbent for in-situ F- groundwater remediation due to its capability to retain F- without leaching out in a wide range pH. MPSAC would be an alternative adsorbent for ex-situ F- water remediation because it can easily regenerate with NaOH solution. With the excellent F- adsorption properties, both PSAC and MPSAC offer as promising adsorbents for F- remediation in the aqueous phase.
    Matched MeSH terms: Magnesium Silicates/chemistry*
  3. Marrakchi F, Khanday WA, Asif M, Hameed BH
    Int J Biol Macromol, 2016 Dec;93(Pt A):1231-1239.
    PMID: 27663552 DOI: 10.1016/j.ijbiomac.2016.09.069
    Cross-linked chitosan/sepiolite composite was prepared from sepiolite clay and chitosan, and was cross-linked using epichlorohydrin. Among the various weight ratio percentage of chitosan and sepiolite clay composites, CS50SP50 was selected as the best adsorbent for both methylene blue (MB) and reactive orange 16 (RO 16). At an optimum adsorbent dosage of 0.2g/100mL, the effects of initial dye concentration (25-400mg/L) and pH (3-11) on MB and RO 16 adsorption onto CS50SP50 composite were studied. Monolayer adsorption capacities of CS50SP50 composite for MB and RO 16 were 40.986mg/g and 190.965mg/g, respectively at 30°C. Freundlich, Langmuir and Temkin isotherms applied on the adsorption data for both the dyes reveal that data fitted best for Freundlich model. For both the dyes pseudo-second-order kinetics were found to describe the adsorption process better than pseudo-first-order kinetics. The adsorption capacity of CS50SP50 composite for both the dyes was found better compared to previous studies thus making it potentially low-cost adsorbent for removal of both cationic and reactive dyes.
    Matched MeSH terms: Magnesium Silicates/chemistry*
  4. Shahmohammadi HR, Bakar J, Rahman RA, Adzhan NM
    J Food Sci, 2014 Feb;79(2):E178-83.
    PMID: 24410375 DOI: 10.1111/1750-3841.12324
    To improve textural attributes of puffed corn-fish snack, the effects of 1%, 1.5%, and 2% of calcium carbonate, magnesium silicate (talc), sodium bicarbonate as well as 5% and 10% of wheat bran (as the nucleating materials) on textural attributes were studied. Sensory evaluation, bulk density, expansion ratio, maximum force, and count peaks were measured using the Kramer test. The results showed that all of the additives except bran significantly enhanced the texture. Among them, talc at 0.5% was the best to enhance the density and expansion ratio. Effects of using 0.5% talc on puffed corn-fish snack microstructure were studied using scanning electron microscopy. The average cell diameter of 109 ± 48 μm and cell numbers per square centimeter of 67.4 for talc-treated products were obtained, while for nontalc-treated extrudates, average cell diameter of 798 ± 361 μm and cell numbers per square centimeter of 13.9 were found. Incorporation of 0.5% w/w of magnesium silicate reduced (7-fold) the average cell diameter while increased (4-fold) the cell number.
    Matched MeSH terms: Magnesium Silicates/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links