Displaying 1 publication

Abstract:
Sort:
  1. Nett RS, Dho Y, Tsai C, Passow D, Martinez Grundman J, Low YY, et al.
    Nature, 2023 Dec;624(7990):182-191.
    PMID: 37938780 DOI: 10.1038/s41586-023-06716-y
    Plants synthesize numerous alkaloids that mimic animal neurotransmitters1. The diversity of alkaloid structures is achieved through the generation and tailoring of unique carbon scaffolds2,3, yet many neuroactive alkaloids belong to a scaffold class for which no biosynthetic route or enzyme catalyst is known. By studying highly coordinated, tissue-specific gene expression in plants that produce neuroactive Lycopodium alkaloids4, we identified an unexpected enzyme class for alkaloid biosynthesis: neofunctionalized α-carbonic anhydrases (CAHs). We show that three CAH-like (CAL) proteins are required in the biosynthetic route to a key precursor of the Lycopodium alkaloids by catalysing a stereospecific Mannich-like condensation and subsequent bicyclic scaffold generation. Also, we describe a series of scaffold tailoring steps that generate the optimized acetylcholinesterase inhibition activity of huperzine A5. Our findings suggest a broader involvement of CAH-like enzymes in specialized metabolism and demonstrate how successive scaffold tailoring can drive potency against a neurological protein target.
    Matched MeSH terms: Lycopodium/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links