The content of indole and the pH have been determined post mortem in shrimps (Pandalus borealis) caught in the Barents Sea and in shrimps caught outside Malaysia, India and Taiwan. These two criteria were compared with organoleptic assessment and the contents of volatile nitrogen bases (ammonia, trimethylamine) and living bacteria. For shrimps caught in the Barents Sea, both raw shrimps stored in ice and processed (broiled, peeled and single-frozen) shrimps were investigated. The results showed that only low levels of indole had been formed during ice-storage. Not until an advanced state of spoilage could a distinct increase in the indole content in raw and in boiled, peeled shrimps be discerned. pH increased slowly and varied in the area between acceptable and not acceptable quality. Neither the indole content nor the pH seems therefore to be a useful criterion for quality assessment either of raw shrimps caught in the Barents Sea or of such shrimps after processing (boiling and peeling). Most of the samples of boiled, peeled shrimps from the Far East were assessed organoleptically as less good-spoiled, and bacterial growth was significant. The content of trimethylamine oxide and volatile nitrogen was low, while the content of indole was high and exceeded 25 microgram/100 g in 8 or 14 samples. This is the upper limit for import in USA. The content of indole seems to be an important quality criterion for shrimps caught in warmer countries. The content of indole exceeded 25 microgram/100 g in some samples which were assessed organoleptically as acceptable. The pH was lower in brine-treated shrimps than in the others.
Binding studies between a multi-targeted anticancer drug, sunitinib (SU) and human serum albumin (HSA) were made using fluorescence, UV-vis absorption, circular dichroism (CD) and molecular docking analysis. Both fluorescence quenching data and UV-vis absorption results suggested formation of SU-HSA complex. Moderate binding affinity between SU and HSA was evident from the value of the binding constant (3.04×104M-1), obtained at 298K. Involvement of hydrophobic interactions and hydrogen bonds as the leading intermolecular forces in the formation of SU-HSA complex was predicted from the thermodynamic data of the binding reaction. These results were in good agreement with the molecular docking analysis. Microenvironmental perturbations around Tyr and Trp residues as well as secondary and tertiary structural changes in HSA upon SU binding were evident from the three-dimensional fluorescence and circular dichroism results. SU binding to HSA also improved the thermal stability of the protein. Competitive displacement results and molecular docking analysis revealed the binding locus of SU to HSA in subdomain IIA (Sudlow's site I). The influence of a few common ions on the binding constant of SU-HSA complex was also noticed.