Displaying 1 publication

Abstract:
Sort:
  1. Azizan EA, Brown MJ
    Curr Opin Endocrinol Diabetes Obes, 2016 06;23(3):209-17.
    PMID: 26992195 DOI: 10.1097/MED.0000000000000255
    PURPOSE OF REVIEW: Aldosterone regulation in the adrenal plays an important role in blood pressure. The commonest curable cause of hypertension is primary aldosteronism. Recently, mutations in novel genes have been identified to cause primary aldosteronism. Elucidating the mechanism of action of these genetic abnormalities may help understand the cause of primary aldosteronism and the physiological regulation of aldosterone in the zona glomerulosa.

    RECENT FINDINGS: KCNJ5, ATP1A1, ATP2B3, CACNA1D, CTNNB1, and CACNA1H mutations are causal of primary aldosteronism. ARMC5 may cause bilateral lesions resulting in primary aldosteronism.LGR5, DACH1, and neuron-specific proteins are highly expressed in the zona glomerulosa and regulate aldosterone production.

    SUMMARY: Most mutations causing primary aldosteronism are in genes encoding cation channels or pumps, leading to increased calcium influx. Genotype-phenotype analyses identified two broad subtypes of aldosterone-producing adenomas (APAs), zona fasciculata-like and zona glomerulosa-like, and the likelihood of under-diagnosed zona glomerulosa-like APAs because of small size. Zona fasciculata-like APAs are only associated with KCNJ5 mutations, whereas zona glomerulosa-like APAs are associated with mutations in ATPase pumps, CACNA1D, and CTNNB1. The frequency of APAs, and the multiplicity of causal mutations, suggests a pre-existing drive for these mutations. We speculate that these mutations are selected for protecting against tonic inhibition of aldosterone in human zona glomerulosa, which express genes inhibiting aldosterone production.

    Matched MeSH terms: Hyperaldosteronism/metabolism*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links