Displaying all 5 publications

Abstract:
Sort:
  1. Hauptmann AL, Paulová P, Hansen LH, Sicheritz-Pontén T, Mulvad G, Nielsen DS
    PLoS One, 2020;15(1):e0227819.
    PMID: 31935269 DOI: 10.1371/journal.pone.0227819
    The foods we eat contain microorganisms that we ingest alongside the food. Industrialized food systems offer great advantages from a safety point of view, but have also been accused of depleting the diversity of the human microbiota with negative implications for human health. In contrast, artisanal traditional foods are potential sources of a diverse food microbiota. Traditional foods of the Greenlandic Inuit are comprised of animal-sourced foods prepared in the natural environment and are often consumed raw. These foods, some of which are on the verge of extinction, have not previously been microbiologically characterized. We mapped the microbiota of foods stemming from traditional Inuit land-based hunting activities. The foods included in the current study are dried muskox and caribou meat, caribou rumen and intestinal content as well as larval parasites from caribou hides, all traditional Inuit foods. This study shows that traditional drying methods are efficient for limiting microbial growth through desiccation. The results also show the rumen content of the caribou to be a highly diverse source of microbes with potential for degradation of plants. Finally, a number of parasites were shown to be included in the biodiversity of the assessed traditional foods. Taken together, the results map out a diverse source of ingested microbes and parasites that originate from the natural environment. These results have implications for understanding the nature-sourced traditional Inuit diet, which is in contrast to current day diet recommendations as well as modern industrialized food systems.
    Matched MeSH terms: Greenland
  2. Storey M, Roberts RG, Saidin M
    Proc Natl Acad Sci U S A, 2012 Nov 13;109(46):18684-8.
    PMID: 23112159 DOI: 10.1073/pnas.1208178109
    The Toba supereruption in Sumatra, ∼74 thousand years (ka) ago, was the largest terrestrial volcanic event of the Quaternary. Ash and sulfate aerosols were deposited in both hemispheres, forming a time-marker horizon that can be used to synchronize late Quaternary records globally. A precise numerical age for this event has proved elusive, with dating uncertainties larger than the millennial-scale climate cycles that characterized this period. We report an astronomically calibrated (40)Ar/(39)Ar age of 73.88 ± 0.32 ka (1σ, full external errors) for sanidine crystals extracted from Toba deposits in the Lenggong Valley, Malaysia, 350 km from the eruption source and 6 km from an archaeological site with stone artifacts buried by ash. If these artifacts were made by Homo sapiens, as has been suggested, then our age indicates that modern humans had reached Southeast Asia by ∼74 ka ago. Our (40)Ar/(39)Ar age is an order-of-magnitude more precise than previous estimates, resolving the timing of the eruption to the middle of the cold interval between Dansgaard-Oeschger events 20 and 19, when a peak in sulfate concentration occurred as registered by Greenland ice cores. This peak is followed by a ∼10 °C drop in the Greenland surface temperature over ∼150 y, revealing the possible climatic impact of the eruption. Our (40)Ar/(39)Ar age also provides a high-precision calibration point for other ice, marine, and terrestrial archives containing Toba sulfates and ash, facilitating their global synchronization at unprecedented resolution for a critical period in Earth and human history beyond the range of (14)C dating.
    Matched MeSH terms: Greenland
  3. Sinding MS, Gopalakrishnan S, Ramos-Madrigal J, de Manuel M, Pitulko VV, Kuderna L, et al.
    Science, 2020 06 26;368(6498):1495-1499.
    PMID: 32587022 DOI: 10.1126/science.aaz8599
    Although sled dogs are one of the most specialized groups of dogs, their origin and evolution has received much less attention than many other dog groups. We applied a genomic approach to investigate their spatiotemporal emergence by sequencing the genomes of 10 modern Greenland sled dogs, an ~9500-year-old Siberian dog associated with archaeological evidence for sled technology, and an ~33,000-year-old Siberian wolf. We found noteworthy genetic similarity between the ancient dog and modern sled dogs. We detected gene flow from Pleistocene Siberian wolves, but not modern American wolves, to present-day sled dogs. The results indicate that the major ancestry of modern sled dogs traces back to Siberia, where sled dog-specific haplotypes of genes that potentially relate to Arctic adaptation were established by 9500 years ago.
    Matched MeSH terms: Greenland
  4. Hauptmann AL, Paulová P, Castro-Mejía JL, Hansen LH, Sicheritz-Pontén T, Mulvad G, et al.
    Food Microbiol, 2020 Feb;85:103305.
    PMID: 31500717 DOI: 10.1016/j.fm.2019.103305
    The practices of preparing traditional foods in the Arctic are rapidly disappearing. Traditional foods of the Arctic represent a rarity among food studies in that they are meat-sourced and prepared in non-industrial settings. These foods, generally consumed without any heating step prior to consumption, harbor an insofar undescribed microbiome. The food-associated microbiomes have implications not only with respect to disease risk, but might also positively influence host health by transferring a yet unknown diversity of live microbes to the human gastrointestinal tract. Here we report the first study of the microbial composition of traditionally dried fish prepared according to Greenlandic traditions and their industrial counterparts. We show that dried capelin prepared according to traditional methods have microbiomes clearly different from industrially prepared capelin, which also have more homogenous microbiomes than traditionally prepared capelin. Interestingly, the locally preferred type of traditionally dried capelin, described to be tastier than other traditionally dried capelin, contains bacteria that potentially confer distinct taste. Finally, we show that dried cod have comparably more homogenous microbiomes when compared to capelin and that in general, the environment of drying is a major determinant of the microbial composition of these indigenous food products.
    Matched MeSH terms: Greenland
  5. Kerfahi D, Tripathi BM, Dong K, Kim M, Kim H, Ferry Slik JW, et al.
    Microb Ecol, 2019 Jan;77(1):168-185.
    PMID: 29882154 DOI: 10.1007/s00248-018-1215-z
    Comparing the functional gene composition of soils at opposite extremes of environmental gradients may allow testing of hypotheses about community and ecosystem function. Here, we were interested in comparing how tropical microbial ecosystems differ from those of polar climates. We sampled several sites in the equatorial rainforest of Malaysia and Brunei, and the high Arctic of Svalbard, Canada, and Greenland, comparing the composition and the functional attributes of soil biota between the two extremes of latitude, using shotgun metagenomic Illumina HiSeq2000 sequencing. Based upon "classical" views of how tropical and higher latitude ecosystems differ, we made a series of predictions as to how various gene function categories would differ in relative abundance between tropical and polar environments. Results showed that in some respects our predictions were correct: the polar samples had higher relative abundance of dormancy related genes, and lower relative abundance of genes associated with respiration, and with metabolism of aromatic compounds. The network complexity of the Arctic was also lower than the tropics. However, in various other respects, the pattern was not as predicted; there were no differences in relative abundance of stress response genes or in genes associated with secondary metabolism. Conversely, CRISPR genes, phage-related genes, and virulence disease and defense genes, were unexpectedly more abundant in the Arctic, suggesting more intense biotic interaction. Also, eukaryote diversity and bacterial diversity were higher in the Arctic of Svalbard compared to tropical Brunei, which is consistent with what may expected from amplicon studies in terms of the higher pH of the Svalbard soil. Our results in some respects confirm expectations of how tropical versus polar nature may differ, and in other respects challenge them.
    Matched MeSH terms: Greenland
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links