Displaying publications 1 - 20 of 89 in total

Abstract:
Sort:
  1. Ford C
    J Trop Med Hyg, 1921;24.
    Matched MeSH terms: Garcinia mangostana
  2. Ng HS, Kee PE, Tan GY, Yim HS, Lan JC
    Appl Biochem Biotechnol, 2020 May;191(1):273-283.
    PMID: 32335865 DOI: 10.1007/s12010-020-03284-z
    Garcinia mangostana pericarp is a good source of natural antioxidants with numerous functional properties. The conventional approaches for the recovery of antioxidants from Garcinia mangostana pericarp require long processing time and high temperature, which may cause degradation or loss of bioactivity of antioxidants, and often result in low recovery efficiency. In this study, the extraction of antioxidants from Garcinia mangostana pericarp was investigated using a polyethylene glycol (PEG)/citrate aqueous biphasic system (ABS) with the addition of surfactants. The optimum condition for the recovery of antioxidants was achieved in PEG 1000/citrate ABS of pH 8 with tie-line length (TLL) of 48.3% (w/w), volume ratio (VR) of 1.6, 0.2% (w/w) sample loading and addition of 1.0% (w/w) Tween 85. The antioxidants were recovered in the PEG-rich top phase with a high K value of 18.23 ± 0.33 and a recovery yield of 92.01% ± 0.09. The findings suggested that the addition of surfactants to polymer/salt ABS can enhance the recovery of antioxidants from Garcinia mangostana pericarps by conserving the antioxidative properties.
    Matched MeSH terms: Garcinia mangostana/chemistry*
  3. Dewi IP, Wahyuni FS, Aldi Y, Ismail NH, Dachriyanus
    J Complement Integr Med, 2023 Jun 01;20(2):365-371.
    PMID: 36750417 DOI: 10.1515/jcim-2022-0419
    OBJECTIVES: The objective of this study is to determine the activity of Garcinia cowa Roxb. n-hexane, ethyl acetate, and butanol fractions as an immunomodulator in vitro and obtain the fraction that has the potential as an immunomodulator.

    METHODS: Raw 264.7 macrophages were used to asses G. cowa Roxb. immunomodulatory activity. The MTT assay was chosen to measure cell viability to evaluate the cytotoxic effect on cells. ELISA method was used to measure the concentration of Interleukin-6 (IL-6) and Tumor Necrosis Factor Alpha (TNF-α) secreted by cells after being treated with G. cowa Roxb. fraction. The neutral red uptake assay determined the effect of Garcinia cowa Roxb. on the phagocytic activity.

    RESULTS: After Raw 264.7 macrophages were given the Hexan fraction (Hex) at concentrations of 12.5 and 25 μg/mL, there was a decrease in the concentration of IL-6, TNF-α, and the phagocytosis index of cells. Administration of the Ethyl Acetate fraction (EtOAc) at concentrations of 12.5 and 25 μg/mL on cells caused a decrease in IL-6 and TNF-α levels but did not affect the phagocytosis index. There was an increase in the level of TNF-α and the phagocytosis index after being given the Butanol fraction (BuOH) with concentrations of 12.5 and 25 μg/mL but there was a slight decrease in the level of IL-6.

    CONCLUSIONS: Both Hex and EtOAc fractions could suppress immune responses through decreasing IL-6, TNF-α, and slightly decreased phagocytic activity. BuOH fraction could stimulate immunomodulatory activities through enhanced TNF-α levels and phagocytic index, but less potent in enhancing IL-6 production. The BuOH fraction could be developed as an immunostimulant.

    Matched MeSH terms: Garcinia*
  4. Jabit ML, Khalid R, Abas F, Shaari K, Hui LS, Stanslas J, et al.
    Z Naturforsch C J Biosci, 2008 2 16;62(11-12):786-92.
    PMID: 18274278
    Two new xanthones, characterized as 4-(1,1-dimethylprop-2-enyl)-1,3,5,8-tetrahydroxyxanthone (1) and penangianaxanthone (2), with three known xanthones, cudratricusxanthone H (3), macluraxanthone C (4) and gerontoxanthone C (5), as well as friedelin and stigmasterol were isolated from the leaves of Garcinia penangiana. Their structures were elucidated by analysis of spectroscopic data and comparison of the NMR data with the literature ones. Significant cytotoxicity against DU-145, MCF-7 and NCI-H460 cancer cell lines was demonstrated by compounds 1-5, with IC50 values ranging from 3.5 to 72.8 microM.
    Matched MeSH terms: Garcinia/chemistry*
  5. Khaw KY, Choi SB, Tan SC, Wahab HA, Chan KL, Murugaiyah V
    Phytomedicine, 2014 Sep 25;21(11):1303-9.
    PMID: 25172794 DOI: 10.1016/j.phymed.2014.06.017
    Garcinia mangostana is a well-known tropical plant found mostly in South East Asia. The present study investigated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of G. mangostana extract and its chemical constituents using Ellman's colorimetric method. Cholinesterase inhibitory-guided approach led to identification of six bioactive prenylated xanthones showing moderate to potent cholinesterases inhibition with IC50 values of lower than 20.5 μM. The most potent inhibitor of AChE was garcinone C while γ-mangostin was the most potent inhibitor of BChE with IC50 values of 1.24 and 1.78 μM, respectively. Among the xanthones, mangostanol, 3-isomangostin, garcinone C and α-mangostin are AChE selective inhibitors, 8-deoxygartanin is a BChE selective inhibitor while γ-mangostin is a dual inhibitor. Preliminary structure-activity relationship suggests the importance of the C-8 prenyl and C-7 hydroxy groups for good AChE and BChE inhibitory activities. The enzyme kinetic studies indicate that both α-mangostin and garcinone C are mixed-mode inhibitors, while γ-mangostin is a non-competitive inhibitor of AChE. In contrast, both γ-mangostin and garcinone C are uncompetitive inhibitors, while α-mangostin is a mixed-mode inhibitor of BChE. Molecular docking studies revealed that α-mangostin, γ-mangostin and garcinone C interacts differently with the five important regions of AChE and BChE. The nature of protein-ligand interactions is mainly hydrophobic and hydrogen bonding. These bioactive prenylated xanthones are worthy for further investigations.
    Matched MeSH terms: Garcinia mangostana/chemistry*
  6. Ee GC, See I, Teh SS, Daud S
    J Asian Nat Prod Res, 2014;16(7):790-4.
    PMID: 24670077 DOI: 10.1080/10286020.2014.901313
    Our phytochemical study on the stem bark of Garcinia mangostana has led to the discovery of a new furanoxanthone, mangaxanthone A (1), together with five known analogs. The five known analogs that were isolated are α-mangostin (2), β-mangostin (3), cowagarcinone B (4), and dulcisxanthone F (5). The structural elucidations of these compounds were carried out by interpreting their spectroscopic data, mainly 1D and 2D NMR spectra and MS.
    Matched MeSH terms: Garcinia mangostana/chemistry*
  7. Ee GC, Foo CH, Jong VY, Ismail NH, Sukari MA, Taufiq Yap YH, et al.
    Nat Prod Res, 2012;26(9):830-5.
    PMID: 22044165 DOI: 10.1080/14786419.2011.559640
    A detailed chemical study on the stem bark of Garcinia nitida has led to the isolation of five xanthones. They are 1,6-dihydroxy-5-methoxy-6,6-dimethylpyrano[2',3':2,3]-xanthone (1), inophyllin B (2), osajaxanthone (3), 3-isomangostin (4) and rubraxanthone (5). The structures of these compounds were established using mainly 1-D and 2-D NMR spectroscopy ((1)H, (13)C, DEPT, COSY, HMBC and HMQC) while molecular masses were determined via MS techniques; 1 is a new compound.
    Matched MeSH terms: Garcinia/chemistry*
  8. Shadid KA, Shaari K, Abas F, Israf DA, Hamzah AS, Syakroni N, et al.
    Phytochemistry, 2007 Oct;68(20):2537-44.
    PMID: 17602714
    Phytochemical studies on the leaves and trunk bark of Garcinia cantleyana yielded five caged-xanthonoids including one tetra- and four tri-prenylated xanthones, cantleyanone A (1), 7-hydroxyforbesione (2) and cantleyanones B-D (4-6), as well as a simple xanthone, 4-(1,1-dimethylprop-2-enyl)-1,3,5,8-tetrahydroxyxanthone (3). Eight other known compounds, deoxygaudichaudione A, gaudichaudione H, friedelin, garbogiol, macranthol, glutin-5-en-3beta-ol, and a mixture of sitosterol and stigmasterol were also isolated. Their structures were elucidated by means of spectroscopic data and comparison of their NMR data with literature values. Significant cytotoxicity against MDA-MB-231, CaOV-3, MCF-7 and HeLa cancer cell-lines was demonstrated by cantleyanones B-D, 7-hydroxyforbesione, deoxygaudichaudione A and macranthol, with IC(50) values ranging from 0.22 to 17.17 microg/ml.
    Matched MeSH terms: Garcinia/chemistry*
  9. Bruguière A, Derbré S, Coste C, Le Bot M, Siegler B, Leong ST, et al.
    Fitoterapia, 2018 Nov;131:59-64.
    PMID: 30321650 DOI: 10.1016/j.fitote.2018.10.003
    Usually isolated from Garcinia (Clusiaceae) or Hypericum (Hypericaceae) species, some Polycyclic Polyprenylated AcylPhloroglucinols (PPAPs) have been recently reported as potential research tools for immunotherapy. Aiming at exploring the chemodiversity of PPAPs amongst Garcinia genus, a dereplication process suitable for such natural compounds has been developed. Although less sensitive than mass spectrometry, NMR spectroscopy is perfectly reproducible and allows stereoisomers distinction, justifying the development of 13C-NMR strategies. Dereplication requires the use of databases (DBs). To define if predicted DBs were accurate enough as dereplication tools, experimental and predicted δC of natural products usually isolated from Clusiaceae were compared. The ACD/Labs commercial software allowed to predict 73% of δC in a 1.25 ppm range around the experimental values. Consequently, with these parameters, the major PPAPs from a Garcinia bancana extract were successfully identified using a predicted DB.
    Matched MeSH terms: Garcinia/chemistry*
  10. Sangkanu S, Mitsuwan W, Mahboob T, Mahabusarakam W, Chewchanwuttiwong S, Siphakdi P, et al.
    Acta Trop, 2022 Feb;226:106266.
    PMID: 34890540 DOI: 10.1016/j.actatropica.2021.106266
    Acanthamoeba keratitis infection extends due to the growing number of contact lens users. Indigenous plants including Garcinia mangostana play a vital role in human health and well being. Many species of this plant have been reported with myriads of potent medicinal properties. However, the aims of this study were, for the first time, to isolate compounds from the flower of G. mangostana and to test their anti-Acanthamoeba and anti-adhesion activity against Acanthamoeba triangularis. Powdered flowers of G. mangostana were extracted and chromatographed on a silica gel column. The structures of the compounds were established with the aid of 1H NMR. More so, the anti-Acanthamoeba and anti-adhesion properties were tested on a 96-well polystyrene microtiter plate and soft contact lenses. Scanning electron microscope (SEM) was used to determine the features of A. triangularis on contact lenses. Eight pure compounds were obtained, namely 9-hydroxycalabaxanthone, tovophillin A, garcinone E, garcinone B, α-mangostin, gartinin, 8-deoxygartinin and γ-mangostin. The extract and pure compounds exhibited anti-Acanthamoeba activity with MIC values in the range of 0.25-1 mg/mL. In addition, the extract and α-mangostin displayed significant activity against the adhesion of A. triangularis trophozoites both in polystyrene plate and in contact lenses at 0.5 × MIC (0.25 mg/mL). Furthermore, α-mangostin has the potential to remove A. triangularis adhesion in contact lenses similar to a commercial multipurpose solution (MPS). SEM study confirmed that crude extract and α-mangostin are effective as solutions for contact lenses, which removed A. triangularis trophozoites within 24 h. Alpha-mangostin was non-toxic to Vero cells at a concentration below 39 μM in 24 h. Crude extract of G. mangostana flower and its α-mangostin serve as candidate compounds in the treatment of Acanthamoeba infection or as lens care solution, since they can be used as a source of natural products against Acanthamoeba and virulence factor associated with the adhesion of A. triangularis.
    Matched MeSH terms: Garcinia mangostana*
  11. Samsir SA, Bunawan H, Yen CC, Noor NM
    Data Brief, 2016 Sep;8:1-5.
    PMID: 27257614 DOI: 10.1016/j.dib.2016.04.062
    In this dataset, we distinguish 15 accessions of Garcinia mangostana from Peninsular Malaysia using Fourier transform-infrared spectroscopy coupled with chemometric analysis. We found that the position and intensity of characteristic peaks at 3600-3100 cm(-) (1) in IR spectra allowed discrimination of G. mangostana from different locations. Further principal component analysis (PCA) of all the accessions suggests the two main clusters were formed: samples from Johor, Melaka, and Negeri Sembilan (South) were clustered together in one group while samples from Perak, Kedah, Penang, Selangor, Kelantan, and Terengganu (North and East Coast) were in another clustered group.
    Matched MeSH terms: Garcinia mangostana
  12. Mazlan O, Aizat WM, Aziz Zuddin NS, Baharum SN, Noor NM
    Data Brief, 2018 Dec;21:2221-2223.
    PMID: 30555858 DOI: 10.1016/j.dib.2018.11.072
    Metabolic regulation is important during seed germination for the establishment of seedling. The germination strategy of mangosteen (Garcinia mangostana L.) seed is thought to be unique due to its recalcitrant characteristic (sensitive to coldness and drying). To investigate the metabolic changes during seed germination, we performed metabolomics analysis on germinating mangosteen seed sown after zero, one, three, five, seven and nine days. Sampled mangosteen seeds were subjected to methanol extraction prior analysis using Liquid Chromatography-Time of Flight-Mass Spectrometry (LC-TOF-MS). MS data were further analyzed using ProfileAnalysis (version 2.1). This is one of the earliest reports in metabolite identification and profiling of mangosteen seed at different germination stages. This data article refers to the article entitled "Metabolite profiling of mangosteen seed germination highlights metabolic changes related to carbon utilization and seed protection" (Mazlan et al., 2019) [1].
    Matched MeSH terms: Garcinia mangostana
  13. Samsir SA, Bunawan H, Yen CC, Noor NM
    Data Brief, 2016 Sep;8:1438-42.
    PMID: 27617279 DOI: 10.1016/j.dib.2016.08.016
    In this dataset, we present 15 Simple Sequence Repeat (SSR) markers with the motifs (AC)n, (GA)n, and (AC)n(AG)n using a ISSR-Suppression-PCR technique in order to discriminate Garcinia mangostana from diverse geographical origins in Peninsular Malaysia. A few loci showed differences between 3 and 6 bp in allele size, indicating that there are some polymorphisms between individuals correlating to the number of SSR repeats that may be useful for differentiate of genotypes. Collectively, these data show that the ISSR-Suppression-PCR is a valuable method to illustrate genetic variation of selected G. mangostana in Malaysia.
    Matched MeSH terms: Garcinia mangostana
  14. Rabeta, M.S., Nur Faraniza, R.
    MyJurnal
    In this study, two types of plants materials were used namely Garcinia atrovirdis and Cynometra
    cauliflora to determine the proximate composition, mineral content and antioxidant activities. Total phenolic content (TPC) and ferric reducing antioxidant power (FRAP) assay had been used to determine antioxidant activity in both samples. The moisture, ash, fiber, fat, protein and carbohydrate content in both samples were determined by using Association of Official Analytical Chemists (AOAC) methods. Mineral content in the sample was determined using Atomic absorption spectrophotpmetry (AAS). The results showed higher TPC and FRAP values in Cynometra cauliflora compared to Garcinia atrovirdis. Methanol extractions gave higher TPC and FRAP values compared to water extraction. The results obtained indicated that both samples have the potential to be as a source of natural antioxidants. Further study should be conducted to explore the benefits of underutilized fruits not only in antioxidant activity but other usages as well.
    Matched MeSH terms: Garcinia
  15. Siti Azima, A.M., Noriham, A., Manshoor, N.
    MyJurnal
    The plant extract serves not only as a good source of bioactive compounds but also as natural pigment that can be applied as colourants in food and pharmaceutical products. The aim of this study were to determine the anthocyanin content of Garcinia mangostana peel extract (GMPE), Clitoria ternatea extract (CTE) and Syzigium cumini extract (SCE) in relation to their antioxidant activity and their colour properties. The antioxidant activities related to the phenolic constituents including anthocyanin content were determined based on the EC50 of DPPH radical scavenging activity and Ferric Reducing Antioxidant Power (FRAP) assay. The colour properties of the plant extracts were measured based on their degradation index (DI), indices of polymeric colour (PC) and colour density (CD). GMPE showed higher FRAP value and lower EC50 value which were 79.37 mmoles/g and 0.11 mg/ml, respectively, as compared to SCE extract with FRAP value, 25.66 mmoles/g and EC50 value, 0.22 mg/ml. Total monomeric anthocyanin (tmAcy) exhibited a strong correlation between FRAP assay (r2 = 0.998) and DPPH assay (r2 = 0.859). GMPE showed high CD (1.63 AU), moderate PC (0.18 AU) but low in DI (1.19 AU) while SCE exhibited low in CD (0.55 AU) and PC (0.07 AU) but moderate DI (1.26 AU). CTE exhibited high in DI (5.39 AU) and PC (0.19 AU) but moderate in CD (0.55). Hence, it can be concluded that colour pigment obtained from GMPE exhibited high antioxidant activity and better colour properties as compared to SCE and the strong correlation between tmAcy and two antioxidant activity assays which are FRAP and DPPH indicated that monomeric anthocyanin plays a major role in antioxidant activity of these plant extracts.
    Matched MeSH terms: Garcinia mangostana
  16. Jamil SZMR, Rohani ER, Baharum SN, Noor NM
    3 Biotech, 2018 Aug;8(8):322.
    PMID: 30034986 DOI: 10.1007/s13205-018-1336-6
    Callus was induced from mangosteen (Garcinia mangostana L.) young purple-red leaves on Murashige and Skoog basal medium with various combinations of plant growth regulators. Murashige and Skoog medium with 4.44 µM 6-benzylaminopurine and 4.52 µM 2,4-dichlorophenoxyacetic acid was the best for friable callus induction. This friable callus was used for the initiation of cell suspension culture. The effects of different combinations of 6-benzylaminopurine and 2,4-dichlorophenoxyacetic acid, carbon sources and inoculum sizes were tested. It was found that combination of 2.22 µM 6-benzylaminopurine + 2.26 µM 2,4-dichlorophenoxyacetic acid, glucose (30 g/l) and 1.5 g/50 ml inoculum size was the best for cell growth. Callus and cell suspension cultures were then treated either with 100 µM methyl jasmonate as an elicitor for 5 days, or 0.5 g/l casein hydrolysate as an organic supplement for 7 days. Metabolites were then extracted and profiled using liquid chromatography-time of flight mass spectrometry. Multivariate discriminant analyses revealed significant metabolite differences (P ≤ 0.05) for callus and suspension cells treated either with methyl jasmonate or casein hydrolysate. Based on MS/MS data, methyl jasmonate stimulated the production of an alkaloid (thalsimine) and fatty acid (phosphatidyl ethanolamine) in suspension cells while in callus, an alkaloid (thiacremonone) and glucosinolate (7-methylthioheptanaldoxime) was produced. Meanwhile casein hydrolysate stimulated the production of alkaloids such as 3ß,6ß-dihydroxynortropane and cis-hinokiresinol and triterpenoids such as schidigerasaponin and talinumoside in suspension cells. This study provides evidence on the potential of secondary metabolite production from in vitro culture of mangosteen.
    Matched MeSH terms: Garcinia mangostana
  17. Mazlan O, Aizat WM, Baharum SN, Azizan KA, Noor NM
    Data Brief, 2018 Dec;21:548-551.
    PMID: 30370325 DOI: 10.1016/j.dib.2018.10.025
    Garcinia mangostana L. (mangosteen) seed is recalcitrant, prone to low temperature and drying which limit its long-term storage. Therefore, it is imperative to understand the metabolic changes throughout its development, to shed some light into the recalcitrant nature of this seed. We performed metabolomics analysis on mangosteen seed at different stages of development; six, eight, ten, twelve and fourteen weeks after anthesis. Seed samples were subjected to methanol extraction prior analysis using liquid chromatography - mass spectrometry (LC-MS). The MS data acquired were analyzed using ProfileAnalysis (version 2.1). This data article refers to the article entitled "Metabolomics analysis of developing Garcinia mangostana seed reveals modulated levels of sugars, organic acids and phenylpropanoid compounds" (Mazlan et al., 2018) [1].
    Matched MeSH terms: Garcinia mangostana
  18. Mohammad NA, Abang Zaidel DN, Muhamad II, Abdul Hamid M, Yaakob H, Mohd Jusoh YM
    Heliyon, 2019 Oct;5(10):e02571.
    PMID: 31667409 DOI: 10.1016/j.heliyon.2019.e02571
    Total phenolic content (TPC) and antioxidant properties of xanthone extract from mangosteen pericarp via microwave-assisted extraction (MAE) method was optimized by response surface methodology (RSM). The MAE extraction conditions to obtain optimum antioxidant-rich xanthone extract were at 2.24 min of irradiation time, 25 mL/g of solvent-to-solid ratio and 71% of ethanol concentration. The predicted results for four responses were as follows; 320.31 mg gallic acid equivalent/g extract, 83.63% and 93.77% inhibition (DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-Azino-bis-3-ethylbenzthiazoline-6-sulfonic acid) assays), and 144.56 mg Trolox equivalent/g extract (FRAP, Ferric reducing antioxidant power). The predicted and actual values were statistically insignificant (P > 0.05). Therefore, these results confirmed that the examined model was acceptable and relevant. MAE led to a slightly similar antioxidant capacity and a higher extraction of α-mangostin, a major xanthone of mangosteen pericarp as compared to water bath-maceration technique.
    Matched MeSH terms: Garcinia mangostana
  19. Mazlan O, Abdul-Rahman A, Goh HH, Aizat WM, Mohd Noor N
    Data Brief, 2018 Feb;16:90-93.
    PMID: 29188226 DOI: 10.1016/j.dib.2017.11.001
    Mangosteen (Garcinia mangostana L.) has exceptional potential for commercial and pharmaceutical applications due to its delicious fruit and medicinal properties. Nevertheless, the molecular mechanism of mangosteen seed development is poorly understood. In this study, we performed transcriptomic analysis of four seed developmental stages; eight, ten, twelve and fourteen weeks after anthesis. Illumina HiSeq™ 4000 sequencer was used to generate raw data of approximately 68 Gb in size. From 451,495,326 raw reads, 406,143,756 clean reads were obtained. The raw data were uploaded to SRA database and the BioProject ID is PRJNA395504. These data provide the basis for further exploration and understanding of the molecular mechanism in mangosteen seed development.
    Matched MeSH terms: Garcinia mangostana
  20. Chuah LO, Ho WY, Beh BK, Yeap SK
    PMID: 23990846 DOI: 10.1155/2013/751658
    Garcinia is a plant under the family of Clusiaceae that is commonly used as a flavouring agent. Various phytochemicals including flavonoids and organic acid have been identified in this plant. Among all types of organic acids, hydroxycitric acid or more specifically (-)-hydroxycitric acid has been identified as a potential supplement for weight management and as antiobesity agent. Various in vivo studies have contributed to the understanding of the anti-obesity effects of Garcinia/hydroxycitric acid via regulation of serotonin level and glucose uptake. Besides, it also helps to enhance fat oxidation while reducing de novo lipogenesis. However, results from clinical studies showed both negative and positive antiobesity effects of Garcinia/hydroxycitric acid. This review was prepared to summarise the update of chemical constituents, significance of in vivo/clinical anti-obesity effects, and the importance of the current market potential of Garcinia/hydroxycitric acid.
    Matched MeSH terms: Garcinia
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links