Displaying all 10 publications

Abstract:
Sort:
  1. Bashir M, Hassan NH
    Methods Mol Biol, 2016;1420:135-42.
    PMID: 27259737 DOI: 10.1007/978-1-4939-3597-0_11
    Insertion/deletion polymorphisms (INDELs) are a relatively new class of a DNA marker to be used in forensic casework; used most commonly as a supplementary method to STR-based typing. INDELs, like SNPs, are particularly useful for the analysis of highly degraded DNA as the amplicon sizes are typically below 160 bp; they can also be valuable as an additional tool to help resolve kinship cases, with the advantage over STRs that they do not have high mutation rates. INDELs have an advantage over SNPs in that they are length polymorphisms and so can be analyzed by simply measuring the length of the allele(s). The Qiagen Investigator(®) DIPplex Kit is currently only one of two commercially available kits for the amplification of INDEL polymorphisms; it amplifies 30 biallelic INDEL loci and the amelogenin locus. The primers used are fluorescence labeled with 6-FAM, BTG, BTY, and BTR. This technique is robust, relatively simple, and the results are analyzed using the same capillary electrophoresis equipment and software as used for STR typing.
    Matched MeSH terms: Forensic Genetics/methods*
  2. Minaguchi K, Samejima M, Nambiar P, Kaneko Y, Ochiai E, Kakimoto Y, et al.
    Leg Med (Tokyo), 2024 Sep;70:102463.
    PMID: 38823287 DOI: 10.1016/j.legalmed.2024.102463
    Closely linked groups of markers on the X chromosome are very useful for testing complex kinship relationships involving X-STR transmission. The Argus X-12 kit, a unique commercially available kit, can obtain haplotypes of 4 linkage groups (LGs) consisting of 3 markers. Although many population data have been reported for forensic purposes, differences in discrimination ability exist between LG1 and LG2, 3, and 4 in East Asian populations, and the data of this kit would become more useful if the discrimination ability of the latter groups were increased. Therefore, for matches found using this kit for some linkage group data, then to increase the identification ability, we additionally introduced 13 X-STR loci and established a method allowing comparison using data from 25 loci. The 13X-STRs add two locus data to each of LG2, 3, and 4, and also add two closely linked group (CLG) data between LG2 and 3 and LG3 and 4 in one multiplex PCR. Assessment of this method for a Malay population for which data by Argus X-12 had already been reported showed that the frequencies of distinct haplotypes in LG2, 3, and 4 were increased by 33.0-42.6 %, and frequencies of unique haplotypes increased by 45.4-59.2 %. The respective haplotype diversity values of the additional 3-locus and 4-locus CLGs were 0.9838 and 0.9939, which helps to improve discriminatory power and to predict recombination locations on the X chromosome. Although we have been testing these loci with Japanese subjects, this system would also be useful for the Malay population.
    Matched MeSH terms: Forensic Genetics/methods
  3. Hameed IH, Jebor MA, Ommer AJ, Abdulzahra AI, Yoke C
    PMID: 25090379 DOI: 10.3109/19401736.2014.945576
    Samples of 100 random healthy unrelated Iraqi male persons from the Arab ethnic group of Iraqi population were collected for mtDNA coding region sequencing by using the Sanger technique and to establish the degree of variation characteristic of a fragment. Portion of coding region encompassing positions 11,719-12,184 was amplified in accordance with the Anderson reference sequence. PCR products were purified by EZ-10 spin column then sequenced and detected by using the ABI 3130xL DNA Analyzer. This is to intend the detection of polymorphisms of mtDNA. Four new polymorphic positions 11,741, 11,756, 11,878, and 12,133 are described which may be suitable in the future to be the sources for human identification purpose in Iraq. The obtained data can be used to identify variable nucleotide positions characterized by frequent occurrence most promising for identification variants. The calculated value GD = 0.95 and RMP = 0.048 of the genetic diversity should be understood as high in the context of coding function of the analysed DNA fragment. The relatively high gene diversity and a relatively low random match probability were observed in this study.
    Matched MeSH terms: Forensic Genetics/methods*
  4. Strobl C, Churchill Cihlar J, Lagacé R, Wootton S, Roth C, Huber N, et al.
    Forensic Sci Int Genet, 2019 09;42:244-251.
    PMID: 31382159 DOI: 10.1016/j.fsigen.2019.07.013
    The emergence of Massively Parallel Sequencing technologies enabled the analysis of full mitochondrial (mt)DNA sequences from forensically relevant samples that have, so far, only been typed in the control region or its hypervariable segments. In this study, we evaluated the performance of a commercially available multiplex-PCR-based assay, the Precision ID mtDNA Whole Genome Panel (Thermo Fisher Scientific), for the amplification and sequencing of the entire mitochondrial genome (mitogenome) from even degraded forensic specimens. For this purpose, more than 500 samples from 24 different populations were selected to cover the vast majority of established superhaplogroups. These are known to harbor different signature sequence motifs corresponding to their phylogenetic background that could have an effect on primer binding and, thus, could limit a broad application of this molecular genetic tool. The selected samples derived from various forensically relevant tissue sources and were DNA extracted using different methods. We evaluated sequence concordance and heteroplasmy detection and compared the findings to conventional Sanger sequencing as well as an orthogonal MPS platform. We discuss advantages and limitations of this approach with respect to forensic genetic workflow and analytical requirements.
    Matched MeSH terms: Forensic Genetics/methods
  5. Ochiai E, Minaguchi K, Nambiar P, Kakimoto Y, Satoh F, Nakatome M, et al.
    Leg Med (Tokyo), 2016 Sep;22:58-61.
    PMID: 27591541 DOI: 10.1016/j.legalmed.2016.08.001
    The Y chromosomal haplogroup determined from single nucleotide polymorphism (SNP) combinations is a valuable genetic marker to study ancestral male lineage and ethical distribution. Next-generation sequencing has been developed for widely diverse genetics fields. For this study, we demonstrate 34 Y-SNP typing employing the Ion PGM™ system to perform haplogrouping. DNA libraries were constructed using the HID-Ion AmpliSeq™ Identity Panel. Emulsion PCR was performed, then DNA sequences were analyzed on the Ion 314 and 316 Chip Kit v2. Some difficulties became apparent during the analytic processes. No-call was reported at rs2032599 and M479 in six samples, in which the least coverage was observed at M479. A minor misreading occurred at rs2032631 and M479. A real time PCR experiment using other pairs of oligonucleotide primers showed that these events might result from the flanking sequence. Finally, Y haplogroup was determined completely for 81 unrelated males including Japanese (n=59) and Malay (n=22) subjects. The allelic divergence differed between the two populations. In comparison with the conventional Sanger method, next-generation sequencing provides a comprehensive SNP analysis with convenient procedures, but further system improvement is necessary.
    Matched MeSH terms: Forensic Genetics/methods*
  6. Goodwin W, Alimat S
    Electrophoresis, 2017 04;38(7):1007-1015.
    PMID: 28008628 DOI: 10.1002/elps.201600383
    The SNPforID consortium identified a panel of 52 SNPs for forensic analysis that has been used by several laboratories worldwide. The original analysis of the 52 SNPs was based on a single multiplex reaction followed by two single-base-extension (SBE) reactions each of which was analyzed using capillary electrophoresis. The SBE assays were designed for high throughput genetic analyzers and were difficult to use on the single capillary ABI PRISM 310 Genetic Analyzer and the latest generation 3500 Genetic Analyzer, as sensitivity on the 310 was low and separation of products on the 3500 with POP-7™ was poor. We have modified the original assay and split it into four multiplex reactions, each followed by an SBE assay. These multiplex assays were analyzed using polymer POP-4™ on ABI 310 PRISM® and polymers POP-4™, POP-6™ and POP-7™ on the 3500 Genetic Analyzer. The assays were sensitive and reproducible with input DNA as low as 60 pg using both the ABI 310 and 3500. In addition, we found that POP-6™ was most effective with the 3500, based on the parameters that we assessed, achieving better separation of the small SBE products; this conflicted with the recommended use of POP-7™ by the instrument manufacturer. To support the use of the SNP panel in casework in Malaysia we have created an allele frequency database from 325 individuals, representing the major population groups within Malaysia. Population and forensic parameters were estimated for all populations and its efficacy evaluated using 51 forensic samples from challenging casework.
    Matched MeSH terms: Forensic Genetics/methods*
  7. Zhan X, Adnan A, Zhou Y, Khan A, Kasim K, McNevin D
    Sci Rep, 2018 03 16;8(1):4673.
    PMID: 29549272 DOI: 10.1038/s41598-018-22975-6
    The Xinjiang Uyghur Autonomous Region of China (XUARC) harbors 47 ethnic groups including the Manchu (MCH: 0.11%), Mongols (MGL: 0.81%), Kyrgyz (KGZ: 0.86%) and Uzbek (UZK: 0.066%). To establish DNA databases for these populations, allele frequency distributions for 15 autosomal short tandem repeat (STR) loci were determined using the AmpFlSTR Identifiler PCR amplification kit. There was no evidence of departures from Hardy-Weinberg equilibrium (HWE) in any of the four populations and minimal departure from linkage equilibrium (LE) for a very small number of pairwise combinations of loci. The probabilities of identity for the different populations ranged from 1 in 1.51 × 1017 (MCH) to 1 in 9.94 × 1018 (MGL), the combined powers of discrimination ranged from 0.99999999999999999824 (UZK) to 0.9999999999999999848 (MCH) and the combined probabilities of paternal exclusion ranged from 0.9999979323 (UZK) to 0.9999994839 (MCH). Genetic distances, a phylogenetic tree and principal component analysis (PCA) revealed that the MCH, KGZ and UZK are genetically closer to the Han population of Liaoning and the Mongol population of Mongolia while the MGL are closer to Han, Japanese, Korean, Malaysian, Hong Kong Han and Russians living in China.
    Matched MeSH terms: Forensic Genetics/methods*
  8. Alwi AR, Mahat NA, Mohd Salleh F, Ishar SM, Kamaluddin MR, A Rashid MR, et al.
    Leg Med (Tokyo), 2024 May;68:102416.
    PMID: 38325234 DOI: 10.1016/j.legalmed.2024.102416
    X-chromosome short tandem repeats (X-STRs) are useful for human identification, especially in complex kinship scenarios. Since forensic statistical parameters vary among populations and the X-STRs population data for the diverse population of Peninsular Malaysia's are unavailable, this attempt for Indians (n = 201) appears forensically relevant to support the 12 X-STRs markers' evidential value for human identification in Malaysia. The Qiagen Investigator® Argus X-12 QS kit showed that DXS10135 was the most polymorphic locus with high genetic diversity, polymorphism information richness, heterozygosity, and exclusion power. Based on allele frequencies, the strength of discrimination and mean exclusion chance (MECKrüger, MECKishida, MECDesmarais, and MECDesmaraisDuo) values for the Malaysian Indians were ≥0.999997790686228. As for haplotype frequencies, the overall discrimination power and mean exclusion probability (MECKrüger, MECKishida, MECDesmarais, and MECDesmaraisDuo) were ≥0.9999984801951. The genetic distance, neighbor-joining phylogenetic tree, and principal component analysis also supported the evidential value of the 12 X-STRs markers for forensic practical caseworks in Malaysia.
    Matched MeSH terms: Forensic Genetics/methods
  9. Ewart KM, Lightson AL, Sitam FT, Rovie-Ryan JJ, Mather N, McEwing R
    Forensic Sci Int Genet, 2020 01;44:102187.
    PMID: 31670244 DOI: 10.1016/j.fsigen.2019.102187
    The illegal ivory trade continues to drive elephant poaching. Large ivory seizures in Africa and Asia are still commonplace. Wildlife forensics is recognised as a key enforcement tool to combat this trade. However, the time and resources required to effectively test large ivory seizures is often prohibitive. This limits or delays testing, which may impede investigations and/or prosecutions. Typically, DNA analysis of an ivory seizure involves pairing and sorting the tusks, sampling the tusks, powdering the sample, decalcification, then DNA extraction. Here, we optimize the most time-consuming components of this process: sampling and decalcification. Firstly, using simulations, we demonstrate that tusks do not need to be paired to ensure an adequate number of unique elephants are sampled in a large seizure. Secondly, we determined that directly powdering the ivory using a Dremel drill with a high-speed cutter bit, instead of cutting the ivory with a circular saw and subsequently powdering the sample in liquid nitrogen with a freezer mill, produces comparable results. Finally, we optimized a rapid 2 -h decalcification protocol that produces comparable results to a standard 3-day protocol. We tested/optimised the protocols on 33 raw and worked ivory samples, and demonstrated their utility on a case study, successfully identifying 94% of samples taken from 123 tusks. Using these new rapid protocols, the entire sampling and DNA extraction process takes less than one day and requires less-expensive equipment. We expect that the implementation of these rapid protocols will promote more consistent and timely testing of ivory seizures suitable for enforcement action.
    Matched MeSH terms: Forensic Genetics/methods*
  10. King JL, Churchill JD, Novroski NMM, Zeng X, Warshauer DH, Seah LH, et al.
    Forensic Sci Int Genet, 2018 09;36:60-76.
    PMID: 29935396 DOI: 10.1016/j.fsigen.2018.06.005
    The use of single nucleotide polymorphisms (SNPs) in forensic genetics has been limited to challenged samples with low template and/or degraded DNA. The recent introduction of massively parallel sequencing (MPS) technologies has expanded the potential applications of these markers and increased the discrimination power of well-established loci by considering variation in the flanking regions of target loci. The ForenSeq Signature Preparation Kit contains 165 SNP amplicons for ancestry- (aiSNPs), identity- (iiSNPs), and phenotype-inference (piSNPs). In this study, 714 individuals from four major populations (African American, AFA; East Asian, ASN; US Caucasian, CAU; and Southwest US Hispanic, HIS) previously reported by Churchill et al. [Forensic Sci Int Genet. 30 (2017) 81-92; DOI: https://doi.org/10.1016/j.fsigen.2017.06.004] were assessed using STRait Razor v2s to determine the level of diversity in the flanking regions of these amplicons. The results show that nearly 70% of loci showed some level of flanking region variation with 22 iiSNPs and 8 aiSNPs categorized as microhaplotypes in this study. The heterozygosities of these microhaplotypes approached, and in one instance surpassed, those of some core STR loci. Also, the impact of the flanking region on other forensic parameters (e.g., power of exclusion and power of discrimination) was examined. Sixteen of the 94 iiSNPs had an effective allele number greater than 2.00 across the four populations. To assess what effect the flanking region information had on the ancestry inference, genotype probabilities and likelihood ratios were determined. Additionally, concordance with the ForenSeq UAS and Nextera Rapid Capture was evaluated, and patterns of heterozygote imbalance were identified. Pairwise comparison of the iiSNP diplotypes determined the probability of detecting a mixture (i.e., observing ≥ 3 haplotypes) using these loci alone was 0.9952. The improvement in random match probabilities for the full regions over the target iiSNPs was found to be significant. When combining the iiSNPs with the autosomal STRs, the combined match probabilities ranged from 6.40 × 10-73 (ASN) to 1.02 × 10-79 (AFA).
    Matched MeSH terms: Forensic Genetics/methods
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links